Иваново, Ивановская область, Россия
Ярославский государственный технический университет (Кафедра «Технология строительного производства»., Профессор)
Ярославль, Ярославская область, Россия
УДК 544.653.2/.3 Электрохимическое окисление-восстановление. Ред-окс процесс
УДК 544.332 Теплота (энтальпия) химических процессов. Изменение энтальпии в химической реакции (^ДH). Аддитивность теплот реакций. Закон Гесса *
The paper presents the analysis on chemical, thermal and electrochemical stability of some aromatic macroheterocycles (MHC) of porphyrin (H2P) class as well as their benzo- and aza-analogues, establishes electronic and structural factors determining the rate of pigment destruction in the presence of oxidant. The values of redox potentials of porphyrin-, tetraaz-, tetrabenzo-porphyrin- and phthalocyanine-type MHCs correlate with the temperatures at which their thermo-oxidative degradation starts and the decomposition rates in oxidizing media. The combined benzo- and azamer substitution in H2P molecules leads to their destabilisation with respect to oxidants, the situation depending strongly on the nature of the oxidant (H2O2, S2O82- and NO3-), the solvent (H2SO4, HOAc) as well as the nature of the metal in the molecule. The polymer state or spatial distortion of the MHC has a significant influence on the resistance to oxidising agents. The reaction mechanisms of oxidation of label-free porphyrins and phthalocyanines by hydrogen peroxide are shown to be identical. In both cases, the reaction centres of MHCs are N H bonds, either in the meso-position (H2Ps) or in the coordination cavity of the H2N4 molecule (H2P), and the pigments are cleaved to colourless products.
tetrapyrrolemacroheterocyclic compounds; porphyrins; phthalocyanines; oxidative degradation, redox potentials
1. (1978) Inorganic biochemistry edited by G. Eichhorn. M.: Mir, pp. 5-113, 339-522 (in Russian).
2. Berezin, B.D. & Enikolopyan, N.S. (1988) Metalloporphyrins. M.: Nauka (in Russian).
3. Mashiko, T., Dolphin, D., Wilkinson, G., Guilard, R., McCleverty, S.A. & Permagon. (1987) Porphyrins, hydroporphyrins, azaporphyrins, phthalocyanines, corroles, corrins and related macrocycles. Comprehensive coordination chemistry. Press: Oxford, 2, pp. 813-898.
4. Kadish, K.M., Smith, K.M. & Guilard, R. (2010-2016) Handbook of porphyrin science. Singapore: World Scient. Publ., V. 1-45.
5. Shelton, R.A. (1994) Metalloporphyrins in catalytic oxidations. Marcel Dekker: New York.
6. Tarasevich, M.R. & Radiushkina, K.A. (1982) Catalysis and electrocatalysis by porphyrins. M.: Nauka (in Russian).
7. Barona-Castaño, J.C., Carmona-Vargas, Ch.C., Brocksom, T.J. & De Oliveira, K.T. (2016) Porphyrins as catalysts in scalable organic reactions, Molecules, 21(3), pp. 310. DOI:https://doi.org/10.3390/molecules21030310.
8. Gonsalves, A.M.A.R. & Pereira, M.M. (1996) State of the art in the development ofbiomimetic oxidation catalysts, J. of Molec. Catal. A: Chem., 113(1-2), pp. 209-221. DOI:https://doi.org/10.1016/S1381-1169(96)00050-7.
9. Feng, L., Wang, K.-Yu., Joseph, E. & Zhou, H.-K. (2020) Catalytic porphyrin framework compounds, Trends in Chem., 2(6), pp. 555-568. DOI:https://doi.org/10.1016/j.trechm.2020.01.003.
10. Simonova, O.R., Zaitseva, S.V. & Koifman, O.I. (2008) Oxidation kinetics of Zn-5,15 bis(ortho-methoxyphenyl)-2,3,7,8,12,13,17,18-octamethylporphyrin with organic peroxides in o-xylene, Russ. J. Gen. Chem., (78), pp. 1260-1267. DOI:https://doi.org/10.1134/S1070363208060285.
11. Denis, T.G.St., Huang, Y.-Y. & Hamblin, M.R. (2013) Cyclic tetrapyrroles in photodynamic therapy: the chemistry of porphyrins and related compounds in medicine. Singapore: World Scient. Publ., 27, pp. 255-301.
12. Giancola, C., Caterino, M., D'Aria, F., Kustov, A.V., Belykh, D.V., Khudyaeva, I.S., Starseva, O.M., Berezin, D.B., Pylina, Y.I., Usacheva, T. & Amato, J. (2020) Selective binding of a bioactive porphyrin-based photosensitizer to the G-quadruplex from the KRAS oncogene promoter, Int. J. Biol. Macromol, (145), pp. 244-251. DOI:https://doi.org/10.1016/j.ijbiomac.2019.12.152.
13. Karimov, D.R., Berezin, D.B. & Tomilova, I.K. (2020) Corroles as aromatic analogues of corrinoids and vitamin B12: synthesis, structural features and properties of macroheterocycles, prospects for chemistry of materials based on them, From Chemistry Towards Technology Step-By-Step, 1(1), pp. 9-56. DOI:https://doi.org/10.52957/27821900_2020_01_9 [online]. Available at: http://chemintech.ru/index.php/tor/2020tom1no1 (in Russian).
14. Koifman, O.I., Ageeva, T.A., Beletskaya, I.P. et al. (2020) Macroheterocyclic compounds - a key building block in new functional materials and molecular devices, Macroheterocycles, 13(4), pp. 311-467. DOI:https://doi.org/10.6060/mhc200814k.
15. Kustov, A.V., Morshnev, P.K., Kukushkina, N.V. et al. (2022) Solvation, cancer cell photoinactivation and the interaction of chlorin photosensitizers with a potential passive carrier non-ionic surfactant Tween 80, Int. J. Mol. Sci., (23), pp. 5294. DOI:https://doi.org/10.3390/ijms23105294.
16. Kustov, A.V., Smirnova, N.L., Berezin, D.B. & Berezin, M.B. (2015) Blood porphyrins in binary mixtures of N,N-dimethylformamide with 1-octanol and chloroform: the energetic of salvation, solute-cosolvent interactions and model calculations, J. Chem. Thermodyn, (83), pp. 104-109. DOI:https://doi.org/10.1016/j.jct.2014.12.013.
17. Kustov, A.V., Smirnova, N.L., MorshnevPh.K. et al. (2022) Transurethral resection of non-muscle invasive bladder tumors combined with fluorescence diagnosis and photodynamic therapy with chlorin e6-type photosensitizers, J. Clin. Med., 11(1), pp. 233. DOI:https://doi.org/10.3390/jcm11010233.
18. Shukhto, O.V., Khudyaeva, I.S., Belykh, D.V. & Berezin, D.B. (2021) Aggregation of hydrophobic chlorines with antimicrobial fragments in aqueous solutions of ethanol and Tween 80, Izvestiya vuzov. Khimiya i khim. tekhnol., 64(11), pp. 86-96. DOI:https://doi.org/10.6060/ivkkt.20216411.6500 (in Russian).
19. Berezin, D.B., Makarov, V.V., Znoyko, S.A., Mayzlish, V.E. & Kustov, A.V. (2020) Aggregation water soluble octaanionic phthalocyanines behavior and their photoinactivation antimicrobial effect in vitro, Mend. Commun., 30(5), pp. 621-623. DOI:https://doi.org/10.1016/j.mencom.2020.09.023.
20. Kustov, A.V., Belykh, D.V., Startseva, O.M., Kruchin, S.O., Venediktov, E.A. & Berezin, D.B. (2016) New photosensitizers developed on a methylpheophorbidea platform for photodynamic therapy: Synthesis, singlet oxygen generation and modeling of passive membrane transport, Pharmaceutica Analytica Acta, 7(5), pp. 480 484. DOI:https://doi.org/10.4172/2153-2435.1000480.
21. Kustov, A.V., Smirnova, N.L., Berezin, D.B. & Berezin, M.B. (2015) Thermodynamics of solution of proto- and mezoporphyrins in N,N-dimethylformamide, J. Chem. Thermodyn, (89), pp. 123-126. DOI:https://doi.org/10.1016/j.jct.2015.05.016.
22. Berezin, B.D. (1981) Coordination compounds of porphyrins and phthalocyanines. Wiley: Toronto.
23. Kadish, K.M., Smith, K.M. & Guilard R. (2000) Electrochemistry of metalloporphyrins in non-aqueous media. The porphyrin handbook. Acad. Press: New York, (8), pp. 1-114.
24. Kadish, K.M., Royal, G., Van Caemelbecke, E. & Gueletti, L. (2000) Metalloporphyrins in non-aqueous media: database of redox potentials. The porphyrin handbook. Acad. Press: New York, 9, pp. 1-219.
25. Sidorov, A.N. & Maslov, V.G. (1975) Negative ions of tetrapyrrole compounds, Uspekhi khimii, 44(4), pp. 577 601 (in Russian).
26. Berezin, B.D. & Berezin, D.B. (2003) A course in modern organic chemistry. M.: Vysshaya shkola, pp. 242-248 (in Russian).
27. Wolfson, S.V., Kalia, O.L., Lebedev, O.L. & Lukyanets, E.A. (1974) Redox reactions of phthalocyanines and related compounds. Kinetics and mechanism of interaction of phthalocyanines with benzoyl peroxide Zhurn. org. khimii, 44(8), pp. 1757-1763 (in Russian).
28. Li, R., Zhang, X., Zhu, P., Ng, D.K.P., Kobayashi, N. & Jiang, J. (2006) Electron-donating or withdrawing nature of substituents revealed by the electrochemistry of metal-free phthalocyanines, Inorg. Chem., 45(5), pp. 2327-2334. DOI:https://doi.org/10.1021/ic051931k.
29. Berezin, D.B. (2010) Macrocyclic effect and structural chemistry of porphyrins. M.: Krasand (in Russian).
30. Berezin, B.D. & Sennikova, G.V. (1969) Kinetics of oxidative degradation of phthalocyanine and pheophytin complexes, Zhurn. fiz. khimii, 43(10), pp. 2499-2504 (in Russian).
31. Potapova, T.I., Petrova, T.A., Lisova, N.N. & Berezin, B.D. (1989) Oxidative degradation of tetrabenzoporphyrin and its substitutes, Izvestiya vuzov. Khimiya i khim. tekhnol., 32(1), pp. 42-45 (in Russian).
32. Akopov, A.S., Bykova, V.V. & Berezin, B.D. (1983) Kinetics of oxidative degradation of tetra-2,3-pyridinporphyrazine and its complexes in reaction with hydrogen peroxide, Sbornik "Problemy khimii rastvorov i tekhnologii zhidkofaznykh materialov", 19(3), pp. 581-585 (in Russian).
33. Antina, E.V., Barannikov, V.P., Berezin, M.B. & Vjugin, A.I. (2001) Physical Chemistry of Solutions of Macroheterocyclic Compounds, Sbornik "Problemy khimii rastvorov i tekhnologii zhidkofaznykh materialov". Ivanovo: IKhR RAS, pp. 217-248 (in Russian).
34. Pop, S.-F., Ion, R.-M., Corobea, M.C. & Raditoiu, V. (2011) Spectral and thermal investigations of porphyrin and phthalocyaninenanomaterials, J. Optoelectr. Adv. Mater., 13(7), pp. 906-911.
35. Berezin, D.B., Karimov, D.R., Barannikov, V.P. & Semeykin, A.S. (2011) Investigation of the thermal stability of porphyrins with chemically active NH-bonding and their associates with electron-donating solvents, Zhurn. fiz. khimii, 85(12), pp. 2325-2330. DOI:https://doi.org/10.1134/S0036024411120041 (in Russian).
36. Shormanova, L.P. & Berezin, B.D. (1970) Oxidative degradation of polymeric phthalocyanine and its complex compounds, Visokomolekulyarnie soedineniya, 12(3), pp. 692-696 (in Russian).
37. Senge, M.O., Kadish, K.M., Smith, K.M. & Guilard, R. (2000) Highly substituted porphyrins. The porphyrin handbook. Acad. Press: New York, (1), pp. 239-347.
38. Flitsch, W. (1988) Hydrogenated porphyrin derivatives: hydroporphyrins, Adv. Heterocycl. Chem., (43), pp. 73-126. DOI:https://doi.org/10.1016/S0065-2725(08)60253-6.
39. Veyrat, M., Ramasseul, R., Turowska-Tyrk, I., Scheidt, W.R., Autret, M., Kadish, K.M. & Marchon, J.-C. (1999) Nickel(II) and Zinc(II) meso-tetracyclohexylporphyrins. Structural and electronic effects induced by meso-cyclohexyl substitution in metalloporphyrins, Inorg. Chem., 38(8), pp. 1772-1779. DOI:https://doi.org/10.1021/ic981233i.
40. Berezin, D.B. (2012) N-substituted porphyrinoids: structure, spectroscopy, reactivity. LAMBERT Acad. Publ.: Saarbrucken (in Russian).
41. Berezin, D.B., Andrianov, V.G. & Semeykin, A.S. (1996) Manifestation of structural features of porphyrin molecules in their ESP, Opt. cpektroskopiya, 80(4), pp. 618-626 (in Russian).
42. Kustov, A.V., Berezin, D.B., Strelnikov, A.I. & Lapochkina, N.P. (2020) Antitumor and antimicrobial photodynamic therapy: mechanisms, targets, clinical and laboratory studies. Practical guide. M.: Largo (in Russian).
43. Kustov, A.V., Morshnev, Ph.K., Kukushkina, N.V., Krestyaninov, M.A., Smirnova, N.L., Berezin, D.B., Kokurina, G.N. & Belykh, D.V. (2022) The effect of molecular structure of chlorin photosensitizers on photo-bleaching of 1,3-diphenylisobenzofurane – the possible evidence of iodine reactive species formation, Comptes Rendus Chimie, (25), pp. 97-102. DOI:https://doi.org/10.5802/crchim.158.
44. Venediktov, E.A., Tulikova, E.Yu., Rozhkova, E.P., Belykh, D.V., Khudyaeva, I.S. & Berezin, D.B. (2017) Synthesis, spectral-luminescent and photochemical properties of the tricationic chlorine derivative e6 with trimethylammonium groups, Makrogeterotsikly, 10(3), pp. 295-300. DOI:https://doi.org/10.6060/mhc170404v (in Russian).
45. Berezin, D.B. & Likhonina, A.E. (2018) Influence of the medium on the fluorescence characteristics, photo- and heat stability of porphyrins of different structure proper, Zhurn. obshchey khimii, 88(10), pp. 1651-1658. DOI:https://doi.org/10.1134/S0044460X18100116 (in Russian).
46. Takeda, J., Ohya, T. & Sato, M. (1992 ) A ferrochelatase transition-state model. Rapid incorporation of copper (II) into nonplanardodecaphenylporphyrin, Inorg. Chem., 31(13), pp. 2877-2880. DOI:https://doi.org/10.1021/ic00039a038.
47. Sazanovich, I.V., Van, Hoek A., Panarin, A.Yu., Bolotin, V.L., Semeykin, A.S., Berezin, D.B. & Chirvony, V.S. (2005) The photophysical and metal coordination properties of the N-CH3 substituted porphyrins: H(NCH3)TPP vs H(NCH3)OEP, J. Porph. Phthaloc, 9(1), pp. 59-67. DOI:https://doi.org/10.1142/S1088424605000113.
48. Berezin, D.B. (2022) The role of the entropic factor in the complexation kinetics of nonplanarporphyrins with localized and delocalized type of NH-bonding, From Chemistry Towards Technology Step-By-Step, 3(1), pp. 48 57. DOI:https://doi.org/10.52957/27821900_2022_01_48 [online]. Available at: http://chemintech.ru/index.php/tor/2022tom3no1 (in Russian).
49. Ongayi, O., Fronczek, F.R. & Vicente, M.G.H. (2003) Benzoylbiliverdins from chemical oxidation of dodeca-substituted porphyrins, Chem. Comm., 9(18), pp. 2298-2299. DOI:https://doi.org/10.1039/B306586C.