сотрудник
Ярославль, Ярославская область, Россия
студент
Ярославль, Ярославская область, Россия
студент
Ярославль, Ярославская область, Россия
аспирант
Ярославль, Ярославская область, Россия
The article describes the analysis of gas-liquid ejection apparatuses designs. The authors consider the trends of design for innovative apparatuses, anddwell on implementation for devices using the process of liquid atomisation. The conducted experimental studies allow us to assess the efficiency of gas-liquid ejection apparatus. The article considers the experimental dependences of the "sulphite number" on the pressure drop across the nozzle and the ejector diameter.
gas-liquid ejector, atomisation, dispersion, "sulphite number", efficiency
1. Leontiev, V.K. (1984) Interphase surface, flow structure and calculation methodology of apparatuses with ejection gas dispersion. PhD. Yaroslavl (in Russian).
2. Leontiev, V.K., Korableva, O.N. & Girba E.A. (2021) Use of gas-liquid devices in industry, From Chemistry Towards Technology Step-By-Step, 2(2), pp. 76-80. DOI:https://doi.org/10.52957/27821900_2021_02_76 [online] Available at: http://chemintech.ru/index.php/tor/issue/view/2021-2-2 (in Russian).
3. Pazhi, D.G. & Galustov, V.S. (1984) Principles of liquid atomisation technique. Moscow: Khimiya (in Russian).
4. Grishaev, I.G., Dolgov, V.V., Kazak, V.G. & Pagaleshkin D.A. (2013) Method for obtaining ammonium sulfate-nitrate, 2483048 RF (in Russian).
5. Panikarovskikh, K.S. (2018) Method of drying phosphoric acid slurry in the drying drum at the production of mineral fertilisers, 2653019 RF (in Russian).
6. Papizhuk, E.N., Rustambekov, M.K. & Sister V.G. (2016) Liquid dispersion by a centrifugal nozzle with an internal insert with spiral channels in the formation mode of large droplets, Khimicheskoe i neftegazovoe mashinostroenie, (8), pp. 10-14 (in Russian).
7. Kryukova, E.N., Sister, V.G., Rustambekov, M.K. & Ivannikova, E.M. (2014) Influence of surface tension on the droplet size during liquid dispersion by a centrifugal nozzle, Khimicheskoe i neftegazovoe mashinostroenie, (12), pp. 6-12 (in Russian).
8. Sister, V.G., Kryukova, E.N. & Rustambekov, M.K. (2023) Study of centrifugal nozzle operation in the mode of large droplets, Estestvennye i matematicheskie nauki v sovremennom mire: sb. st. po mater. VII mezhdunar. nauch.-prakt. konf. Novosibirsk: SibAK [online]. Available at: https://sibac.info/conf/naturscience/vii/33245 (accessed 10.09.2023) (in Russian).
9. Khazhmetov, L.M., Shekikhachev, Yu.A., Khazhmetova, A.L., Kankulova, F.H., Tkhagapsova, A.R. & Mishkhozhev, K.V. (2022) Pneumoacoustic atomiser for herbicide application in the boles of perennial plantings, AgroEkoInfo: Elektronnyj nauchno-proizvodstvennyj zhurnal, (2) [online]. Available at: http://agroecoinfo.ru/STATYI/2022/2/st_230.pdf (accessed 10.09.2023) (in Russian).
10. Samsonov, Yu.V. (2020) Analysis of the atomisation process of agrochemicals at chemical plant protection, Nauka i Obrazovanie, 3(4) [online]. Available at: http://opusmgau.ru/index.php/see/article/view/2723 (accessed 10.09.2023) (in Russian).
11. Leontiev, V.K., Korableva, O.N., Soboleva, L.M. & Marzaeva K.A. (2019) Device for gas-liquid contact, 187523 RF (in Russian).
12. Leontiev, V.K., Korableva, O.N., Ignatyeva, M.S. & Makartsev, D.V. (2017) Apparatus for contact of steam with liquid, 174136 RF (in Russian).
13. Leontiev, V.K., Korableva, O.N.& Kiseleva, A.A. (2019) Apparatus for gas-liquid contact, 187844 RF (in Russian).
14. Leontiev, V.K., Korableva, O.N., Smirnova, O.V. & Pogodina, T.V. (2017) Apparatus for gas-liquid contact, 169750 RF (in Russian).
15. Leontiev, V.K. & Korableva, O.N. (2021) Gas-liquid apparatus for foam production, 207087 RF (in Russian).
16. Korableva, O.N. & Leontiev, A.V. (2023) Gas-liquid apparatus for foam production, 216370 RF (in Russian).
17. Voevoda, S.S. (2004) Influence of the design and mode of the foam-generating device operation on the process of the high-fold fire-fighting foam formation (in Russian), Pozharovzryvozasbezopasnost, 13(3), pp. 50-52 (in Russian).
18. Leontiev, V.K., Sugak, A.V., Moskvichev, Yu.A., Shalygin, E.V. & Nikiforov, P.A. (2008) Increase of the gas-liquid reactor operation efficiency under the electromagnetic field influence, Khimicheskoe i neftegazovoe mashinostroenie, (11), pp. 14-16 (in Russian).
19. Zakharov, V.P., Berlin, A.A., Monakov, Y.B. & Deberdeev, R.Ya. (2008) Physico-chemical bases of rapid liquid-phase processes. Moscow: Nauka (in Russian).