STUDY OF JET APPARATUS OPERATION WITH PHASE INVERSION
Аннотация и ключевые слова
Аннотация (русский):
The paper considers three operational modes of a nozzle-ejector jet system. The study suggests modeling gas-liquid injection as gas permeation through a suspension of liquid droplets in forward flow. In this case, the process will be analogous to gas flow through a fluidized bed. The research determines a pressure drop through the well-known Ergun equation, which is applicable over a wide range of Reynolds numbers. The authors identify the depth of gas-liquid layer formation during phase inversion based on theoretical studies. For the jet apparatus most frequently used in gas-liquid ejector reactors. The authors calculated the ejector length at which phase inversion occurs.

Ключевые слова:
jet apparatus (or ejector), process intensification, phase inversion, Ergun equation, fluidized bed
Список литературы

1. Leontiev V.K., Barasheva M.A. Calculation of a gas-liquid ejector apparatus for the absorption process. Izv. vuzov. Khimiya i khim. tekhnologiya, 2012, 55(12), 98-100 (in Russian).

2. Leontiev V.K., Korableva O.N., Yurovskaya M.A. Evaluation of the efficiency of gas-liquid apparatuses with ejector gas dispersion. Izv. vuzov. Khimiya i khim. tekhnologiya, 2016, 59(12), 107-112. DOI:https://doi.org/10.6060/tcct.20165912.5420 (in Russian).

3. Leontiev V.K., Korableva O.N. Development of gas-liquid ejection apparatus construction designs. Chem. Pet. Eng., 2016, 52(3), 160-163. DOI:https://doi.org/10.1007/s10556-016-0167-8.

4. Leontiev V.K., Korableva O.N. On the phase contact surface in a gas-liquid ejector apparatus. Izv. vuzov. Khimiya i khim. tekhnologiya, 2014, 57(8), 84-86. (in Russian)

5. Leontiev V.K., Korableva O.N., Girba E.A. Use of gas-liquid apparatus in industry. From Chemistry Towards Technology Step-By-Step, 2021, 2(2), 76-80. DOI:https://doi.org/10.52957/27821900_2021_02_76 (in Russian).

6. Leontiev V.K., Girba E.A., Leontiev A.V., Ryabkov I.A. Investigation of mass transfer in a gas-liquid ejector apparatus. Izv. vuzov. Khimiya i khim. tekhnologiya, 2009, 52(9), 133-134 (in Russian).

7. Leontiev V.K., Korableva O.N. Experimental determination of the aeration energy and gas content of the medium in a gas-liquid ejection apparatus. Chem. Pet. Eng., 2021, 57(7), 551-554. DOI:https://doi.org/10.1007/s10556-021-00974-1.

8. Leontiev V.K., Budnikov K.N., Potkin I.A., Kochetkova E.B. Efficiency assessment of gas-liquid ejection apparatus with different ejector diameters. From Chemistry Towards Technology Step-By-Step, 2024, 5(1), 58-64. Available at: https://chemintech.ru/ru/nauka/issue/5007/view (accessed 14.05.2025) (in Russian).

9. Pazhi D.G., Galustov V.S. Principles of liquid atomisation technique. Moscow: Khimiya, 1984. 256 p. (in Russian).

10. Sokolov E.Ya., Zinger N.M. Jet apparatuses ed. by T.I. Mushinskaya. Moscow: Energoatom, 1989, 352 p. Available at: https://dwg.ru/dnl/10437?ysclid=mapjvgdh4c516632659 (accessed 14.05.2025) (in Russian).

11. Gushchin Yu.I., Galitsky I.V., Basargin B.N. On the classification of jet apparatuses for liquid-gas systems. Massoobmennye i teploobmennye protsessy khimicheskoi tekhnologii in the collection of scientific works of Yaroslavl Polytechnic Institute, 1975, 32-38 (in Russian).

12. Leontiev V.K. Interphase surface, flow structure and calculation methodology of apparatuses with ejection gas dispersion: Dissertation of Candidate of Technical Sciences. Yaroslavl, 1984, 186 p. (in Russian).

13. Lukanin A.V. Engineering ecology: processes and apparatuses for cleaning gas-air emissions, textbook. M.: Infra-M., 523 p. (in Russian).

14. Gushchin Yu.I., Galitsky I.V., Basargin B.N. Efficiency coefficient of a jet apparatus. Massoobmennye i teploobmennye protsessy khimicheskoi tekhnologii, 1975, 20-25 (in Russian).

15. Gelperin N.I. Basic processes and apparatus of chemical technology: in 2 books, Moscow: Khimiya, 1981, 812 p. (in Russian).

Войти или Создать
* Забыли пароль?