Ярославль, Ярославская область, Россия
Ярославль, Ярославская область, Россия
The paper considers three operational modes of a nozzle-ejector jet system. The study suggests modeling gas-liquid injection as gas permeation through a suspension of liquid droplets in forward flow. In this case, the process will be analogous to gas flow through a fluidized bed. The research determines a pressure drop through the well-known Ergun equation, which is applicable over a wide range of Reynolds numbers. The authors identify the depth of gas-liquid layer formation during phase inversion based on theoretical studies. For the jet apparatus most frequently used in gas-liquid ejector reactors. The authors calculated the ejector length at which phase inversion occurs.
jet apparatus (or ejector), process intensification, phase inversion, Ergun equation, fluidized bed
1. Leontiev V.K., Barasheva M.A. Calculation of a gas-liquid ejector apparatus for the absorption process. Izv. vuzov. Khimiya i khim. tekhnologiya, 2012, 55(12), 98-100 (in Russian).
2. Leontiev V.K., Korableva O.N., Yurovskaya M.A. Evaluation of the efficiency of gas-liquid apparatuses with ejector gas dispersion. Izv. vuzov. Khimiya i khim. tekhnologiya, 2016, 59(12), 107-112. DOI:https://doi.org/10.6060/tcct.20165912.5420 (in Russian).
3. Leontiev V.K., Korableva O.N. Development of gas-liquid ejection apparatus construction designs. Chem. Pet. Eng., 2016, 52(3), 160-163. DOI:https://doi.org/10.1007/s10556-016-0167-8.
4. Leontiev V.K., Korableva O.N. On the phase contact surface in a gas-liquid ejector apparatus. Izv. vuzov. Khimiya i khim. tekhnologiya, 2014, 57(8), 84-86. (in Russian)
5. Leontiev V.K., Korableva O.N., Girba E.A. Use of gas-liquid apparatus in industry. From Chemistry Towards Technology Step-By-Step, 2021, 2(2), 76-80. DOI:https://doi.org/10.52957/27821900_2021_02_76 (in Russian).
6. Leontiev V.K., Girba E.A., Leontiev A.V., Ryabkov I.A. Investigation of mass transfer in a gas-liquid ejector apparatus. Izv. vuzov. Khimiya i khim. tekhnologiya, 2009, 52(9), 133-134 (in Russian).
7. Leontiev V.K., Korableva O.N. Experimental determination of the aeration energy and gas content of the medium in a gas-liquid ejection apparatus. Chem. Pet. Eng., 2021, 57(7), 551-554. DOI:https://doi.org/10.1007/s10556-021-00974-1.
8. Leontiev V.K., Budnikov K.N., Potkin I.A., Kochetkova E.B. Efficiency assessment of gas-liquid ejection apparatus with different ejector diameters. From Chemistry Towards Technology Step-By-Step, 2024, 5(1), 58-64. Available at: https://chemintech.ru/ru/nauka/issue/5007/view (accessed 14.05.2025) (in Russian).
9. Pazhi D.G., Galustov V.S. Principles of liquid atomisation technique. Moscow: Khimiya, 1984. 256 p. (in Russian).
10. Sokolov E.Ya., Zinger N.M. Jet apparatuses ed. by T.I. Mushinskaya. Moscow: Energoatom, 1989, 352 p. Available at: https://dwg.ru/dnl/10437?ysclid=mapjvgdh4c516632659 (accessed 14.05.2025) (in Russian).
11. Gushchin Yu.I., Galitsky I.V., Basargin B.N. On the classification of jet apparatuses for liquid-gas systems. Massoobmennye i teploobmennye protsessy khimicheskoi tekhnologii in the collection of scientific works of Yaroslavl Polytechnic Institute, 1975, 32-38 (in Russian).
12. Leontiev V.K. Interphase surface, flow structure and calculation methodology of apparatuses with ejection gas dispersion: Dissertation of Candidate of Technical Sciences. Yaroslavl, 1984, 186 p. (in Russian).
13. Lukanin A.V. Engineering ecology: processes and apparatuses for cleaning gas-air emissions, textbook. M.: Infra-M., 523 p. (in Russian).
14. Gushchin Yu.I., Galitsky I.V., Basargin B.N. Efficiency coefficient of a jet apparatus. Massoobmennye i teploobmennye protsessy khimicheskoi tekhnologii, 1975, 20-25 (in Russian).
15. Gelperin N.I. Basic processes and apparatus of chemical technology: in 2 books, Moscow: Khimiya, 1981, 812 p. (in Russian).