DIFFUZIYA SHCHELOCHNOGO METALLA V FERRITNYKH SISTEMAKH
Abstract and keywords
Abstract (English):
Vyyasnen mekhanizm tverdofaznogo vzaimodeistviya monoferrita kaliya s gematitom. Opredelena rol' oksida zheleza kak matritsy dlya sozdaniya dal'neishei struktury katalizatora. V protsesse ehksperimenta gotovilis' tabletirovannye obraztsy monoferrita kaliya i gematita. Tabletki pomeshchalis' v spetsial'nyi zazhim i podvergalis' termoobrabotke. Metodom iskusstvennoi metki byl issledovan mekhanizm tverdofaznogo vzaimodeistviya v sisteme KFeO2-Fe2O3. Dlya otsenki sootnosheniya produktov tverdofaznogo vzaimodeistviya monoferrita kaliya s gematitom ispol'zovali parametry q, rasschityvaemye po dannym rentgenografii. Predstavlena stolbchataya diagramma parametrov q[β"(0111)], q[β(017)] i q[Fe2O3(110)] v zavisimosti ot glubiny proniknoveniya kaliya v ob"em gematita. Analiz struktur gematita i poliferritov kaliya pozvolyaet predpolozhit', chto iony shchelochnogo metalla diffundiruyut v reshetku gematita. V obrazovavshemsya poliferrite dvizhenie kationov prodolzhaetsya mezhdu blokami sostava {Fe11O17}. Iony K+ zanimayut pravil'nye pozitsii v reshetke obrazovavshegosya poliferrita. Blizhe k granitse soprikosnoveniya tabletok raspolagaetsya sloi, bogatyi β″-poliferritom kaliya. Po mere udaleniya ot granitsy kontakta tabletok obrazuyutsya poliferrity shchelochnogo metalla so strukturami β"-glinozema i β-glinozema. Po mere udaleniya ot granitsy soprikosnoveniya tabletok soderzhanie β″-poliferrita umen'shaetsya s vozrastanie doli β- fazy. Obrazuyushchiesya poliferrity po svoei suti yavlyayutsya tverdymi ehlektrolitami, sposobnymi obespechivat' transport ionov shchelochnogo metall po opredelennym kanalam v strukture poliferrita. Privedena zavisimost' faktora f(β″), opisyvayushchego sootnoshenie β- i β″-faz v produktakh ferritoobrazovaniya, ot stepeni prevrashcheniya monoferrita kaliya v poliferrity pri termoobrabotke smesei KFeO2+2Fe2O3 pri temperature 1150 K. Pri uvelichenii stepeni prevrashcheniya f(β″) umen'shaetsya, dostigaya opredelennogo sootnosheniya β- i β″-poliferritov. Stabilizatsiya v ehtom sluchae bystree vsego dostigaetsya za schet ehnergii kogerentnogo srastaniya β- i β″-faz.

Keywords:
monoferrit kaliya, gematit, tverdofaznoe vzaimodeistvie, poliferrity so strukturoi β-glinozema i β"-glinozema
Text
Text (PDF): Read Download
References

1. Dvoreckaya A.N., Anikanova L.G., Sudzilovskaya T.N., Malysheva Z.G., Dvoreckiy N.V. Elektroprovodnost' poliferrita kaliya, legirovannogo dvuhzaryadnymi kationami. Ot himii k tehnologii shag za shagom, 2024, 5(2), 70-77. URL: https://chemintech.ru/ru/nauka/issue/5176/view (data obrascheniya 24.12.2024).

2. Dvoreckaya A.N., Anikanova L.G., Dvoreckiy N.V. Vliyanie prekursora i rezhima sinteza na svoystva gematita dlya prigotovleniya promotirovannyh zhelezooksidnyh katalizatorov. Kataliz v promyshlennosti, 2022, 22(5), 6-14. DOI:https://doi.org/10.18412/1816-0387-2022-5-6-14.

3. Lamberov A.A., Dementyeva E.V., Vavilov D.I., Kuzmina O.V., Gilmullin R.R., Pavlova E.A. The influence of ceric oxide on phase composition and activity of iron oxide catalysts. Adv. Chem. Eng. Sci., 2012, 2(1), 28-33. URL: https://www.scirp.org/journal/paperinformation?paperid=16714 (data obrascheniya 24.12.2024).

4. Dvoreckiy N.V., Anikanova L.G., Malysheva Z.G. Tipy aktivnyh centrov na poverhnosti promotirovannogo zhelezooksidnogo katalizatora. Izv. vuzov. Himiya i him. tehnologiya, 2018, 61(6), 61-68. DOIhttps://doi.org/10.6060/tcct.20186106.5658.

5. Kotarba A., Rożek W., Serafin I., Sojka Z. Reverse Effect of Doping on Stability of Principal Components of Styrene Catalyst: KFeO2 and K2Fe22O34. Journal of Catalysis, 2007, 247(2), 238-244. DOI:https://doi.org/10.1016/j.jcat.2007.02.009.

6. Joseph Y., Ketteler G., Kuhrs C., Ranke W., Weiss W., Schlögl R. On the Preparation and Composition of Potassium Promoted Iron Oxide Model Catalyst Films. Phys. Chem. Chem. Phys., 2001, 18(3), 4141-4153. DOI:https://doi.org/10.1039/B104263G.

7. Li Zh., Shanks B.H. Role of Cr and V on the stability of potassium-promoted iron oxides used as catalysts in ethylbenzene dehydrogenation. Appl. Catal., A, 2011, 405(1–2), 101-107. DOI:https://doi.org/10.1016/j.apcata.2011.07.036.

8. do Carmo Rangel M., Mayer F.M., de Oliveira S.J., Marchetti S.G., Faita F.L., Ruiz D., Saboia G., Dagostini M.K., Morais J., Alves M.D.C.M. Dehydrogenation of ethylbenzene to styrene over magnesium-doped hematite catalysts. Appl. Catal., A, 2024, 669, 119514. DOI:https://doi.org/10.1016/j.apcata.2023.119514.

9. Shijie L., Tong C., Changxi M., Weimin Y., Zaiku X., Qingling C. Deactivation of the Industrial Catalyst for Ethylbenzene Dehydrogenation to Styrene. Chin. J. Catal., 2008, 29(2), 179-184. URL: https://www.cjcatal.com/EN/Y2008/V29/I2/179.

10. de Souza Ramos M., de Santana Santos M., Gomes L. P., Albornoz A., do Carmo Rangel M. The influence of dopants on the catalytic activity of hematite in the ethylbenzene dehydrogenation. Appl. Catal., A, 2008, 341(1–2), 12-17. DOI:https://doi.org/10.1016/j.apcata.2007.12.035.

11. Anikanova L.G., Dvoreckiy N.V. Stabilizaciya schelochnyh promotorov v strukture zhelezooksidnyh katalizatorov degidrirovaniya. Kataliz v promyshlennosti, 2016, 16(1), 29-36. DOI:https://doi.org/10.18412/1816-0387-2016-1-29-36.

12. Shaskol'skaya M.P. Kristallografiya. M.: Vysshaya shkola, 1984, 376 s.

13. Chen M., Zhao E., Yan Q., Hu Z., Xiao X., Chen D. The Effect of Crystal Face of Fe2O3 on the Electrochemical Performance for Lithium-ion Batteries. Sci. Rep., 2016, 6(1), 29381. URL: https://www.nature.com/articles/srep29381

14. Anikanova L.G., Dvoreckiy N.V. Raspredelenie schelochnyh promotorov v strukture zhelezooksidnogo katalizatora degidrirovaniya. Kataliz v promyshlennosti, 2012, 4, 18-23.

Login or Create
* Forgot password?