SELEKTIVNAYA MODIFIKACIYA TETRAGIDROHROMENO[2,3-D]PIRIMIDIN-2-ONOV
Abstract and keywords
Abstract (English):
V dannoy rabote predstavleny rezul'taty sinteza i harakteristiki semi novyh proizvodnyh tetragidrohromeno[2,3-d]pirimidin-2-onov, poluchennyh putem selektivnoy modifikacii gidroksil'noy gruppy v polozhenii S-8. Reakcii alkilirovaniya i acetilirovaniya byli uspeshno ispol'zovany dlya vvedeniya zamestiteley v molekulu, chto pozvolilo poluchit' seriyu novyh geterociklicheskih soedineniy s vyhodami do 94 %. Harakteristika poluchennyh soedineniy provedena metodami YaMR-spektroskopii (¹H i ¹³C), a takzhe mass-spektrometrii.

Keywords:
tetragidrohromeno[2,3-d]pirimidin-2-ony, iodistyy metil, angidrid uksusnoy kisloty, alkilirovanie, acilirovanie
Text
Text (PDF): Read Download
References

1. Costa M., Dias T. A., Brito A., Proença F. Biological importance of structurally diversified chromenes // Eur. J. Med. Chem. 2016. Vol. 123. P. 487-507. DOI:https://doi.org/10.1016/j.ejmech.2016.07.057. URL: https://www.sciencedirect.com/science/article/abs/pii/S0223523416306201 (data obrascheniya 08.10.2024).

2. Laitonjam W., Thiyam M., Laitonjam W.S., Haobam R. Synthesis and screening for antioxidant and cytotoxic activities of novel 2-thioxobenzo[f]chromeno[2,3-d]pyrimidin-4-ones derived by cetylpyridinium chloride catalyzed multicomponent reactions in aqueous micellar media // Indian J. Chem. Sec. B (IJC-B). 2021. Vol. 60, Iss. 9. P 1243-1257. URL: http://nopr.niscair.res.in/handle/123456789/60 (data obrascheniya 08.10.2024).

3. Halawa A.H., Elaasser M.M., El Kerdawy A.M., Abd El-Hady A. M. A. I., Emam H.A., El-Agrody A.M. Anticancer activities, molecular docking and structure–activity relationship of novel synthesized 4H chromene, and 5H-chromeno [2,3-d]pyrimidine candidates // Med. Chem. Res. 2017. Vol. 26, Iss. 10. P. 2624–2638. DOI:https://doi.org/10.1007/s00044-017-1961-3. URL: https://tohoku.elsevierpure.com/en/publications/anticancer-activities-molecular-docking-and-structureactivity-rel (data obrascheniya 08.10.2024).

4. Oh S., Young Lee J., Choi I., Ogier A., Kwon D.Y., Jeong H., Son S.J., Kim Y., Kwon H., Park S., Kang H., Kong K., Ahn S., Nehrbass U., Kim M.J., Song R. Discovery of 4H-chromeno[2,3-d]pyrimidin-4-one derivatives as senescence inducers and their senescence-associated antiproliferative activities on cancer cells using advanced phenotypic assay // Eur. J. Med. Chem. 2021. Vol. 209. P. 112550. DOI:https://doi.org/10.1016/j.ejmech.2020.112550. URL: https://www.sciencedirect.com/science/article/abs/pii/S0223523420305225 (data obrascheniya 08.10.2024).

5. Oliveira-Pinto S., Pontes O., Lopes D., Sampaio-Marques B., Costa M.D., Carvalho L., Gonçalves C.S., Costa B.M., Maciel P., Ludovico P., Baltazar F., Proença F., Costa M. Unravelling the anticancer potential of functionalized chromeno[2,3-b]pyridines for breast cancer treatment // Bioorg. Chem. 2020. Vol. 100. P. 103942. DOI:https://doi.org/10.1016/j.bioorg.2020.103942. URL: https://www.sciencedirect.com/science/article/abs/pii/S0045206820 (data obrascheniya 08.10.2024).

6. Moustafa A.H., Mohammed S.M., Abd El-Salam E.A., El-Sayed H.A. Synthesis and Antimicrobial Activity of New 3H-Chromeno[2,3-d]pyrimidine Derivatives // Russ. J. Gen. Chem. 2020. Vol. 90. iss. 8. P. 1566–1572. DOI:https://doi.org/10.1134/S1070363220080277. URL: https://link.springer.com/article/10.1134/S1070363220080277 (data obrascheniya 10.10.2024).

7. Sharma P.K., Sharma H.P., Chakole C.M., Pandey J., Chauhan M.K. Application of Vitamin E TPGS in ocular therapeutics – attributes beyond excipient // J. Indian Chem. Soc. 2022. Vol. 99, Iss. 3. P. 100387. DOI:https://doi.org/10.1016/j.jics.2022.100387. URL: https://www.sciencedirect.com/science/article/abs/pii/S0019452222000498 (data obrascheniya 11.10.2024).

8. Pandey A., Pandey A., R. Dubey R., Kant R., Pandey J. Synthesis and computational studies of potent antimicrobial and anticancer indolone scaffolds with spiro cyclopropyl moiety as a novel design element // J. Indian Chem. Soc. 2022. Vol. 99. iss. 7. P. 100539. DOI:https://doi.org/10.1016/j.jics.2022.100539. URL: https://www.sciencedirect.com/science/article/abs/pii/S0019452222002011 (data obrascheniya 09.10.2024).

9. Hamid A.M.A., El-Sayed H.A., Mohammed S.M., Moustafa A.H., Morsy H.A. Functionalization of 1,2,3-Triazole to Pyrimidine, Pyridine, Pyrazole, and Isoxazole Fluorophores with Antimicrobial Activity // Russ. J. Gen. Chem. 2020. Vol. 90, Iss. 3. P. 476-482. DOI:https://doi.org/10.1134/S1070363220030226. URL: https://link.springer.com/article/10.1134/S1070363220030226 (data obrascheniya 08.10.2024).

10. Zhang, X. F., Xie, L., Liu, Y., Xiang, J. F., Li, L., Tang, Y. L. Molecular interaction and energy transfer between human serum albumin and bioactive component Aloe dihydrocoumarin // J. Mol. Struct. 2008. Vol. 888, Iss. 1 3. P. 145-151. DOI:https://doi.org/10.1016/j.molstruc.2007.11.051. URL: https://www.sciencedirect.com/science/article/abs/pii/S0022286007007971 (data obrascheniya 08.10.2024).

11. Maresca A., Temperini C., Pochet L., Masereel B., Scozzafava A., Supuran C. T. Deciphering the mechanism of carbonic anhydrase inhibition with coumarins and thiocoumarins // J. Med. Chem. 2010. Vol. 53, Iss. 1. P. 335 344. DOI:https://doi.org/10.1021/jm901287j. URL: https://pubs.acs.org/doi/10.1021/jm901287j (data obrascheniya 11.10.2024).

12. Chirkova Zh.V., Makarova E.S., Uryadova A.M., Filimonov S.I., Shalabanova M.S., Ivanovskiy S.A. Aminoliz geksagidrohromeno[4,3-d]pirimidin-2,5-dionov // Ot himii k tehnologii shag za shagom. 2024. T. 5, vyp. 1. S. 40-47. URL: https://chemintech.ru/ru/nauka/issue/5007/view (data obrascheniya 08.10.2024). [Chirkova Zh.V., Makarova E.S., Uryadova A.M., Filimonov S.I., Shalabanova M.S., Ivanovsky S.A. Aminolysis of hexahydrochromeno[4,3-d]pyrimidine-2,5-diones // From Chemistry Towards Technology Step-By-Step. 2024. Vol. 5. iss. 1. P. 114-121 [online]. Available at: https://chemintech.ru/ru/nauka/issue/5007/view] (data obrascheniya 08.10.2024).

13. Bajire S.K., Prabhu A., Bhandary Y.P., Irfan K.M., Shastry R.P. 7-Ethoxycoumarin rescued Caenorhabditis elegans from infection of COPD derived clinical isolate Pseudomonas aeruginosa through virulence and biofilm inhibition via targeting Rhl and Pqs quorum sensing systems // World J. Microbiol. Biotechnol. 2023. Vol. 39, Iss. 8. P. 208. DOI:https://doi.org/10.1007/s11274-023-03655-8. URL: https://link.springer.com/article/10.1007/s11274-023-03655-8 (data obrascheniya 08.10.2024).

14. Fatykhov R.F., Chupakhin, O.N., Inyutina A.K., Khalymbadzha I.A. Synthetic Approaches to Unsymmetrically Substituted 5,7-Dihydroxycoumarins // Synthesis. 2020. Vol. 52, Iss. 5. P. 660-672. DOI:https://doi.org/10.1055/s-0039-1690780. URL: https://www.thieme-connect.com/products/ejournals/abstract/10.1055/s-0039-1690780 (data obrascheniya 12.10.2024).

15. Sai Priya T., Ramalingam V., Suresh Babu K. Natural products: A potential immunomodulators against inflammatory-related diseases // Inflammopharmacology. 2024. Vol. 32, Iss. 5. P. 2821-2859. DOI:https://doi.org/10.1007/s10787-024-01562-4. URL: https://link.springer.com/article/10.1007/s10787-024-01562-4 (data obrascheniya 13.10.2024).

16. Fu Z., Zhang L., Hang S., Wang S., Li N., Sun X., Wang Z., Sheng R., Wang F., Wu W., Guo, R. Synthesis of coumarin derivatives: a new class of coumarin-based G protein-coupled receptor activators and inhibitors // Polymers. 2022. Vol. 14, Iss. 10. P. 2021. DOI:https://doi.org/10.3390/polym14102021. URL: https://www.mdpi.com/2073-4360/14/10/2021 (data obrascheniya 12.10.2024).

17. Makarova E.S., Kabanova M.V., Filimonov S.I., Chirkova Z.V., Ivanovsky S.A., Shetnev A.A., Suponitsky K.Y. Regioselective synthesis of substituted tetrahydrochromeno[2,3-d]pyrimidin-2-ones and-pyrimidine-2-thiones. // Russ. Chem. Bull. 2023. Vol. 72, Iss. 6. P. 1454-1465. DOI:https://doi.org/10.1007/s11172-023-3920-0. URL: https://link.springer.com/article/10.1007/s11172-023-3920-0 (data obrascheniya 14.10.2024).

18. 18. Makarova E.S., Kabanova M.V., Filimonov S.I., Shetnev A.A., Suponitsky K.Yu. Synthesis of substituted hexahydro-2H-chromeno[4,3-d]pyrimidine-2,5-diones and their modification at the hydroxy group // Russ. Chem. Bull. 2022. Vol. 71, Iss. 5. P. 1034-1042. DOI:https://doi.org/10.1007/s11172-022-3505-3. URL: https://link.springer.com/article/10.1007/s11172-022-3505-3/ (data obrascheniya 14.10.2024).

Login or Create
* Forgot password?