Yaroslavl, Yaroslavl, Russian Federation
Yaroslavl, Yaroslavl, Russian Federation
Yaroslavl, Yaroslavl, Russian Federation
Based on the analysis of the literature data, it is determined that as a result of the expanding directions of application of the magnetic fluid, more and more magnetite is required to obtain it. The most common method of obtaining magnetite by chemical condensation makes magnetic fluid very expensive, one liter of which is sold for more than 500 USD. To reduce its cost, the paper proposes the methods of high-temperature reduction of iron-containing wastes to magnetite, which are metallurgical dust caught by electrofilters. As a reducing agent the waste activated carbon and carbon black (soot) are used the codes of which are included in the Federal classification catalog of waste (FKKO) and reflect a significant amount of their formation. After mixing iron-containing waste, activated carbon waste and carbon black, they are gradually heated to a temperature of 900 °C. These conditions create the possibility of the appearance of ferrous iron ions, which, occupying vacant places in the crystal lattice of iron oxide (III), contribute to the formation of magnetite. The magnetite was identified by X-ray technique and evaluated by the indicator of saturation magnetization in comparison with the natural magnetite appeared to be almost identical. The resulting magnetites were dissolved in hydrochloric acid and precipitated with ammonium hydroxide. Repeated determination of saturation magnetization did not show any difference in its level. In the suspension of magnetite, a dispersant in the form of oleic acid and a dispersion medium – kerosene was introduced during heating and stirring. The saturation magnetization and stability of the obtained magnetic fluid satisfied its application for water purification from oil and oil products spill.
magnetite, metallurgical dust, waste of carbon black, sediment of water de-Ironing station, magnetic liquid
1. Morozov N.A., Kazakov Yu.B. Nanodispersnye magnitnye zhidkosti v tehnike i tehnologiyah. Ivanovo: IGEU, 2011. 264 s.
2. Gordeev B.A., Maslov G.V., Okhulkov S.N., Osmekhin A.N. On Developing a Magneto-rheological Transformer That Operates in Orthogonal Magnetic Fields. Journal of Machinery Manufacture and Reliability. 2014. V. 43. N 2. R. 99–103. DOI:https://doi.org/10.3103/S105261881402006X
3. Belyaev E.S., Ermolaev A.I., Titov E.Yu., Tumakov S.F. Magnitoreologicheskie zhidkosti: tehnologii sozdaniya i primenenie: monografiya. Pod red. A.S. Plehova. Nizhniy Novgorod: Nizhegorod. gos. tehn. un-t im. R.E. Alekseeva, 2017. 94 s.
4. Hoang Ch.T., Yurmazova T.A., Vaytulevich E.A. Magnetit s modificirovannoy poverhnost'yu dlya vodoochistki. Izvestiya Tomskogo politehnicheskogo universiteta. Inzhiniring georesursov. 2019. T. 330. № 8. S. 163-172. DOI:https://doi.org/10.18799/24131830/2019/8/2222
5. Lebedev A.V., Lysenko S.N., Gileev V.G. Magnitnaya zhidkost', stabilizirovannaya polimetilsiloksanom, ostaetsya zhidkoy bez nesuschey sredy. Kolloidnyy zhurnal. 2020. T. 82. № 3. S. 339-345. DOI:https://doi.org/10.31857/S0023291220030064
6. Pshenichnikov A.F., Elfimova E.A., Ivanov A.O. Magnetophoresis, Sedimentation, and Diffusion of Particles in Concentrated Magnetic Fluids. Journal of Chemical Physics. 2011. V. 134. N 18. R. 184508 DOI:https://doi.org/10.1063/1.3586806
7. Antonenko T.S., Brik A.B., Ponomar V.P., Dudchenko N.A. Preobrazovanie slabomagnitnyh mineralov (gematit, getit) v magnetit v vodnoy srede soley zheleza (II). Mineralogichniy zhurnal. 2018. T. 40. № 2(196). S. 36-44. DOI:https://doi.org/10.15407/mineraljournal.40.02.036
8. Kalaeva S.Z., Makarov V.M., Shipilin M.A., Bazhanova A.G., Zaharova I.N., Yamanin I.A., Ershova A.N. Sintez i primenenie magnitnoy zhidkosti. Sb. nauch. trudov Vseros. nauch. konf. «Fiziko-himicheskie i prikladnye problemy magnitnyh dispersnyh nanosistem». 14-17 sentyabrya 2009 g. Stavropol': SGU, 2009. S. 7-10.
9. Albagachiev A.Yu., Danilov V.D. Magnitnaya zhidkost' v rezhime gidrodinamicheskoy smazki sfericheskih poverhnostey. Vestnik Bryanskogo gosudarstvennogo tehnicheskogo universiteta. 2016. № 3(51). S. 90-93. DOI:https://doi.org/10.12737/22017
10. Kazakov Yu.B., Stradomskiy Yu.I., Morozov N.A., Perminov S.M. Germetizatory na osnove nanodispersnyh magnitnyh zhidkostey i ih modelirovanie. Pod obsch. red. Yu.B. Kazakova. Ivanovo: IGEU, 2010. 180 s.
11. Morozov N.A., Kazakov Yu.B. Nanodispersnye magnitnye zhidkosti v tehnike i tehnologiyah. Ivanovo: IGEU, 2011. 264 s.
12. Pshenichnikov A.F., Lebedev A.V., Radionov A.V., Efremov D.V. Magnitnaya zhidkost' dlya raboty v sil'nyh gradientnyh polyah. Kolloidnyy zhurnal. 2015. T. 77. № 2. S. 207-213. DOI:https://doi.org/10.7868/S0023291215020159
13. Kurbatov A.A., Morozov N.A., Stradomskiy Yu.I., Schelykalov Yu.Ya. Modelirovanie processa regeneracii magnitnoy zhidkosti iz omagnichennyh nefteproduktov. Vestnik IGEU. 2003. Vyp. 1. S. 26-30.
14. Solov'eva O.Yu., Kalaeva S.Z., Makarov V.M., Korotaeva T.A., Ershova A.N. Utilizaciya omagnichennyh nefteproduktov v rezinovyh smesyah i rezinah. Ekologiya i promyshlennost' Rossii. 2010. № 12. S. 22-23.
15. Makarov V.M., Kalaeva S.Z., Markelova N.L., Tyukina L.A., Dubov A.Y. Production of nanodisperse magnetite for polymer compositions to be used for various purposes. Magnetohydrodynamics. 2018. V. 54. N 1-2. S. 141–145. DOI:https://doi.org/10.22364/mhd.54.1-2.25
16. Ershova A.N., Kalaeva S.Z., Makarov V.M., Zaharova I.N., Guschin A.G., Shipilin M.A., Shipilin A.M. Poluchenie magnitnyh zhidkostey dlya medicinskih tehnologiy. Sb. nauch. tr. 14-y Mezhdunarod. Plesskoy konf. po nanodispersnym magnitnym zhidkostyam. Ples, 7-10 sentyabrya 2010 g. S. 270-273.
17. Kalaeva S.Z., Ershova A.N., Guschin A.G., Makarov V.M. Novye sposoby polucheniya magnitnyh zhidkostey dlya innovacionnyh medicinskih tehnologiy. Mater. XVI Mezhdunarod. nauch.-prakt. konf. «Tehnologicheskoe obrazovanie kak faktor innovacionnogo razvitiya strany». 4-8 oktyabrya 2010 g. Yaroslavl': YaGPU im. K.D. Ushinskogo, 2010. S. 276-277.
18. Makarov V.M., Kalaeva S.Z., Kruchina M.A., Markelova N.L., Zakharova I.N., Ezhov A.A., Shipilin A.M. Production of magnetite-containing composite based on iron hydroxide from underground waters to synthesize magnetic fluids. Magnetohydrodynamics. 2018. V. 54. N 1-2. P. 137–140. DOI:https://doi.org/10.22364/mhd.54.1-2.24