STATE AND SOLVATION OF WATER H/D ISOTOPOLOGUES IN APROTIC DIPOLAR ORGANIC MEDIA BASED ON RESULTS OF THERMOCHEMICAL INVESTIGATIONS
Abstract and keywords
Abstract (English):
Based on the analysis of thermochemical data on the study of solvation of H2O and D2O molecules and the state of them in aprotic dipolar organic media, being available in the literature including the results of own calorimetric measurements by the authors, three groups of solvents were identified in the given review. They differ in the nature of specific interaction with water H/D isotopologues. The first group consists of moderately electron-donating tetrahydrofuran (THF), para-dioxane (DO), and acetone (Ac), solvents whose hydrogen-bonds with the solute water are not much inferior in energy to those being formed between H2O or D2O molecules. The effects of heterocomponent H(D)-bond formation in the solvents of second group consisting of the predominantly electron-accepting propylene carbonate (PC), acetonitrile (AN), and nitromethane (NM) are largely caused by the availability of their donor-acceptor centers to interact with water isotopologue molecules. In this sense, PC corresponds in overall to the solvents from first group, while steric inconsistencies for the interaction of AN and, especially, NM with H2O or D2O molecules decrease appreciably the hydrogen-bonding contribution to forming the water-containing “solvation complex”. The process of solvation of H2O or D2O molecules in solvents of the third group, namely, in N,N-dimethylformamide (DMF), N,N-dimethylacetamide (DMA), hexamethylphosphotriamide (HMPT), and dimethylsulphoxide (DMSO), where electron-donating abilities are higher than that of water, on the contrary, is accompanied by the formation of energetically more stable heterocomponent H- or D-bonds, compared to those existing in the “unary” aqueous medium. It was found that D2O‒H2O isotope effects (IE) in the standard molar enthalpy of water solvation are in rather good correlation with the energy of hydrogen bonding between H2O and an aprotic dipolar solvent. The specified enthalpy-isotope effects of solvation are also correlated in overall with the half-sum of donor and acceptor numbers (according to Gutmann) relating to the aprotic dipolar organic media being compared. The possibility of plotting the correct dependence of IE in the standard molar enthalpy of water solvation in amides on the solvent structuredness parameter (according to Ohtaki) was illustrated, too.

Keywords:
water H/D isotopologues, aprotic dipolar organic solvents, standard molar enthalpies of dissolution and solvation, isotope effects, hydrogen-bonding, donor-acceptor properties
Text
Text (PDF): Read Download
References

1. Holmes J.R., Kivelson D., Drinkard W.C. Proton exchange rates and hydrogen-bonding for water in organic solvents. J. Am. Chem. Soc. 1962. V. 84. N 24. P. 4677-4686. DOI:https://doi.org/10.1021/ja00883a013.

2. Masterton W.L., Gendrano M.C. Henry’s law studies of solutions of water in organic solvents. J. Phys. Chem. 1966. V. 70. N 9. P. 2895-2898. DOI:https://doi.org/10.1021/j100881a029.

3. Christian S.D., Taha A.A., Gash B.W. Molecular complexes of water in organic solvents and in the vapour phase. Quart. Rev., Chem. Soc. 1970. V. 24. N 1. P. 20-36. DOI:https://doi.org/10.1039/QR9702400020.

4. Karyakin A.V., Krivencova G.A. Sostoyanie vody v organicheskih i neorganicheskih soedineniyah. M.: Nauka, 1973. 176 s.

5. Bonner O.D., Choi Y.S. Hydrogen-bonding of water in organic solvents. I. J. Phys. Chem. 1974. V. 78. N 17. P. 1723-1727. DOI:https://doi.org/10.1021/j100610a009.

6. Luck W.A.P. Water in nonaqueous solvents. Pure Appl. Chem. 1987. V. 59. N 9. P. 1215-1228. DOI:https://doi.org/10.1351/pac198759091215.

7. Abrosimov V.K. Sol'vataciya i sostoyanie vody v nevodnyh rastvoritelyah. Termodinamika rastvorov neelektrolitov: sb. nauch. tr. Ivanovo: IHNR AN SSSR, 1989. S. 66-69.

8. Belousov V.P., Panov M.Yu. Termodinamika vodnyh rastvorov neelektrolitov. L.: Himiya, 1983. 265 s.

9. Dickens B., Dickens S.H. Estimation of concentration and bonding environment of water dissolved in common solvents using near infrared absorptivity. J. Res. Natl. Inst. Stand. Technol. 1999. V. 104. N 2. P. 173-183. DOI:https://doi.org/10.6028/jres.104.012.

10. Sirotkin V.A., Solomonov B.N., Fayzullin D.A., Fedotov V.D. IK-spektroskopicheskoe izuchenie sostoyaniya vody v dioksane i acetonitrile: svyaz' s termodinamicheskoy aktivnost'yu vody pri 278‒318 K. Zhurn. strukt. himii. 2000. T. 41. № 6. S. 1205-1212.

11. Abrosimov V.K., Ivanov E.V. Voda v nevodnyh rastvoritelyah: sostoyanie i sol'vataciya. Voda: Struktura, sostoyanie, sol'vataciya. Dostizheniya poslednih let (seriya «Problemy himii rastvorov»); pod red. A.M. Kutepova. M.: Nauka, 2003. S. 277-346 (404 s.).

12. Ivanov E.V., Abrosimov V.K., Lebedeva E.Yu. Ob'emnye svoystva rastvorov N2O i D2O v geksametiltriamide fosfornoy kisloty pri razlichnyh temperaturah. Zhurn. neorg. himii. 2003. T. 48. № 6. S. 1038-1043.

13. Ivanov E.V., Abrosimov V.K., Lebedeva E.Yu. Ob'emnye svoystva N2O, D2O i metanola v acetonitrile pri 278.15‒318.15 K. Izv. RAN. Ser. him. 2003. № 6. S. 1254-1260.

14. Ivanov E.V., Lebedeva E.Yu., Abrosimov V.K. Proyavlenie strukturnyh osobennostey dioksanovoy sredy v N/D-izotopnyh effektah sol'vatacii vody pri 288,15–318,15 K. Zhurn. strukt. himii. 2004. T. 45. № 5. S. 852-861.

15. Ivanov E.V., Abrosimov V.K., Lebedeva E.Yu. Izotopnyy effekt v parcial'noy rasshiryaemosti rastvorennoy vody kak indikator sposobnosti aprotonnogo dipolyarnogo rastvoritelya k obrazovaniyu H-svyazey. Zhurn. strukt. himii. 2004. T. 45. № 6. S. 1020-1026.

16. Ivanov E.V. Vzaimosvyaz' mezhdu ental'piynymi i ob'emnymi effektami rastvoreniya zhidkih neelektrolitov. Zhurn. fiz. himii. 2004. T. 78. № 8. S.1400-1405.

17. Dei L., Grassi S. Peculiar properties of water as solute. J. Phys. Chem. B. 2006. V. 110. N 24. P. 12191-12197. DOI:https://doi.org/10.1021/jp060633l.

18. Kushare S.K., Kolhapurkar R.R., Dagade D.H., Patil K.J. Compressibility studies of binary solutions involving water as a solute in nonaqueous solvents at T = 298.15 K. J. Chem. Eng. Data. 2006. V. 51. N 5. P. 1617-1623. DOI:https://doi.org/10.1021/je0601098.

19. Kolhapurkar R., Dagade D., Patil K., Kaulgud M. Studies of electrical moment and thermodynamic properties of water in organic solvents at 298.15 K. J. Mol. Liq. 2007. V. 136. N 1-2. P. 169-176. DOI:https://doi.org/10.1016/j.molliq.2007.03.014.

20. Kushare S.K., Dagade D.H., Patil K.J. Volumetric and compressibility properties of liquid water as a solute in glycolic, propylene carbonate, and tetramethylurea solutions at T = 298.15 K. J. Chem. Thermodyn. 2008. V. 40. N 1. P. 78-83. DOI: 10.1016/ j.jct.2007.05.010.

21. Ivanov E.V., Abrosimov V.K., Lebedeva E.Yu. Volumetric properties of dilute solutions of water in acetone between 288.15 and 318.15 K. J. Solut. Chem. 2008. V. 37. N 9. P. 1261-1270. DOI:https://doi.org/10.1007/s10953-008-9301-3.

22. Abrosimov V.K., Ivanov E.V., Lebedeva E.Yu. Osobennosti vliyaniya mikroprimesey vody na strukturu acetona. Ob'emnye effekty sol'vatacii H2O i D2O. Dokl. akad. nauk. 2008. T. 421. № 4. S. 490-493.

23. Ivanov E.V., Kustov A.V. Volumetric properties of (water + hexamethylphosphoric triamide) from (288.15 to 308.15) K. J. Chem. Thermodyn. 2010. V. 42. N 9. P. 1087-1093. DOI:https://doi.org/10.1016/j.jct.2010.04.003.

24. Ivanov E.V. Water as a solute in nitromethane: Effect of H2O‒D2O isotope substitution on the solution volumetric properties between 278.15 K and 318.15 K. J. Chem. Thermodyn. 2010. V. 42. N 12. P. 1458-1464. DOI:https://doi.org/10.1016/j.jct.2010.07.002.

25. Ivanov E.V. Volumetric properties of H2O and D2O solutions in propylene carbonate at T = (278.15, 288.15, 298.15, 308.15, and 318.15) K under atmospheric pressure. J. Mol. Liq. 2011. V. 159. N 2. P. 124-131. DOI:https://doi.org/10.1016/j.molliq.2010.12.009.

26. Ivanov E.V., Lebedeva E.Yu., Abrosimov V.K., Ivanova N.G. Densimetric studies of binary solutions involving H2O or D2O as a solute in dimethylsulfoxide at temperatures from (293.15 to 328.15) K and atmospheric pressure. J. Solut. Chem. 2012. V. 4. N 8. P. 1311-1333. DOI:https://doi.org/10.1007/s10953-012-9877-5.

27. Ivanov E.V., Abrosimov V.K., Lebedeva E.Yu. Apparent molar volumes and expansibilities of H2O and D2O in N,N-dimethylformamide and N,N-dimethylacetamide in the range of T = (278.15 to 318.15) K at p = 0.1 MPa: A comparative analysis, J. Chem. Thermodyn. 2012. V. 53. P. 131-139. DOI:https://doi.org/10.1016/j.jct.2012.04.007.

28. Ivanov E.V. To the issue of temperature-dependent behavior of standard molar volumes of components in the binary system (water + tetrahydrofuran) at ambient pressure. J. Chem. Thermodyn. 2014. V. 72. P. 37-43. DOI:https://doi.org/10.1016/j.jct.2013.12.028.

29. Martins M.A.R., Coutinho J.A.P., Pinho S.P., Domańska U., Lukoshko E.V. Measurements of activity coefficients at infinite dilution of organic solutes and water on polar imidazolium-based ionic liquids. J. Chem. Thermodyn. 2015. V. 91. P. 194-203. DOI:https://doi.org/10.1016/j.jct.2015.07.042.

30. Marciniak A., Wlazło M. Activity coefficients at infinite dilution and physicochemical properties for organic solutes and water in the ionic liquid trihexyltetradecylphosphonium tricyanomethanide. J. Chem. Thermodyn. 2018. V. 120. P. 72-78. DOI: 10.1016/ j.jct.2018.01.003 (i ssylki v etoy stat'e).

31. Dahi A., Fatyeyeva K., Chappey C., Langevin D., Marais S. Water molecular state in 1-hexylpyridinium hexafluorophosphate: Water mean cluster size as a function of water concentration. J. Mol. Liq. 2019. V. 292. N 111109. P. 1-9. DOI: 10.1016/ j.molliq.2019.111109.

32. Nkosi N., Tumba K., Ngema P., Ramsuroop S. Infinite dilution activity coefficients and thermodynamic properties of selected organic solutes and water dissolved in 1,6-hexanediol. J. Chem. Thermodyn. 2020. V. 151. N 106163. P. 1-10. DOI: 10.1016/ j.jct.2020.106163.

33. Haidl J., Dohnal V. Activity coefficients of water at infinite dilution in common oxygenated solvents. J. Chem. Eng. Data. 2020. V. 65. N 5. P. 2790-2797. DOI:https://doi.org/10.1021/acs.jced.0c00108.

34. Królikowski M., Królikowska M., Więckowski M., Piłowski A. The influence of the ionic liquids functionalization on interaction in binary systems with organic solutes and water – Thermodynamic data of activity coefficients at infinite dilution. J. Chem. Thermodyn. 2020. V. 147. N 106117. P. 1-13. DOI:https://doi.org/10.1016/j.jct.2020.106117 (i ssylki v etoy stat'e).

35. Ivanov E.V., Kolker A.M. Thermodynamics of (water + hexamethylphosphoramide) mixtures: Heat capacity properties in the temperature range between 283.15 K and 298.15 K at ambient pressure. J. Chem. Thermodyn. 2021. V. 154. N 106342. P. 1-11. DOI:https://doi.org/10.1016/j.jct.2020.106342.

36. Burger K. Sol'vataciya, ionnye reakcii i kompleksoobrazovanie v nevodnyh sredah: per. s angl. M.: Mir, 1984. 256 s.

37. Riddick J.A., Bunger W.B., Sakano T.K. Organic solvents: Physical properties and methods of purification. V. 2. (“Techniques of chemistry” series). New York: Wiley-Interscience, 1986. 1344 p.

38. Marcus Y. The Properties of Solvents. London: John Wiley & Sons, 1998. 254 p.

39. Gutmann V. The Donor-Acceptor Approach to Molecular Interactions. New York: Plenum Press, 1978. 279 p.

40. Mamantov G., Popov A.I. (Eds.). Chemistry of Nonaqueous Solutions: Current Progress. New York: VCH Publishers, Inc, 1994. 377 p.

41. Swain C.G., Bader R.F.W. The nature of the structure difference between light and heavy water and the origin of the solvent isotope effect−I. Tetrahedron. 1960. V. 10. N 3-4. P. 182-199. DOI:https://doi.org/10.1016/S0040-4020(01)97806-8.

42. Rabinovich I.B. Vliyanie izotopii na fiziko-himicheskie svoystva zhidkostey. M.: Nauka. 1968. 308 s.

43. Engdahl A., Nelander B. On the relative stabilities of H- and D-bonded water dimmers. J. Chem. Phys. 1987. V. 86. N 4. P. 1819-1823. DOI:https://doi.org/10.1063/1.452182.

44. Soper A.K., Benmore C.J. Quantum differences between heavy and light water. Phys. Rev. Lett. 2008. V. 101. N 6-8. N. 065502. P. 1-4. DOI: 10.1103/ PhysRevLett.101.065502.

45. Grasin V.I. Izotopnye effekty sol'vatacii i sostoyanie vody v razlichnyh rastvoritelyah pri 278‒318 K: dis. … kand. him. nauk. Ivanovo: IHR RAN, 2002. 175 s.

46. Nakamura M., Tamura K., Murakami S. Isotope effects on thermodynamic properties: mixtures of x(D2O or H2O) + (1−x)CH3CN at 298.15 K. Thermochim. Acta. 1995. V. 253. P. 127-136. DOI:https://doi.org/10.1016/0040-6031(94)02086-4.

47. Sacco A., Matteoli E. Isotopic substitution effects on the volumetric and viscosimetric properties of water ‒ dimethylsulfoxide mixtures at 25 °C. J. Solut. Chem. 1997. V. 26. N 5. P. 527-535. DOI:https://doi.org/10.1007/BF02767604.

48. Miyai K., Nakamura M., Tamura K., S. Murakami. Isotope effects on thermodynamic properties in four binary systems: Water (or heavy water) + dimethylsulfoxide (or N,N-dimethylformamide) at 25 °C. J. Solut. Chem. 1997. V. 26. N 10. P. 973-988.https://doi.org/10.1007/BF02768054K.

49. Scharlin P., Steinby K., Domańska U. Volumetric properties of binary mixtures of N,N-dimethylformamide with water or water-d2 at temperatures from 277.13 K to 318.15 K. J. Chem. Thermodyn. 2002. V. 34. N. 6. P. 927-957. DOI:https://doi.org/10.1006/jcht.2002.0946.

50. Scharlin P., Steinby K. Excess thermodynamic properties of binary mixtures of N,N-dimethylacetamide with water or water-d2 at temperatures from 277.13 K to 318.15 K. J. Chem. Thermodyn. 2003. V. 35. N 2. P. 279-300. DOI:https://doi.org/10.1016/S0021-9614(02)00359-2.

51. Ewing M.B, Lilley T.H., Olofsson G.M., Ratzsch M.T., Somsen G. Standard quantities in chemical thermodynamics. Fugacities, activities and equilibrium constants for pure and mixed phases (IUPAC Recommendations 1994). Pure Appl. Chem. 1994. V. 66. N 3. P. 533-552. DOI:https://doi.org/10.1351/pac199466030533.

52. Wilhelm E. Chemical thermodynamics: a journey of many vistas. J. Solut. Chem. 2014. V. 43. N 3. P. 525-576. DOI:https://doi.org/10.1007/s10953-014-0140-0.

53. Muller P. Glossary of terms used in physical organic chemistry (IUPAC Recommendations 1994). Pure Appl. Chem. 1994. V. 66. N 5. P. 1077-1184. DOI:https://doi.org/10.1351/pac199466051077.

54. Zacepina G.N. Fizicheskie svoystva i struktura vody. M.: Izd-vo MGU, 1987. 171 s.

55. Korolev V.P., Krestov G.A. Vliyanie izotopii na mezhmolekulyarnye vzaimodeystviya v vode. Izv. vuzov. Himiya i him. tehnologiya. 1987. T. 30. № 4. S. 124-126.

56. Krestov G.A., Korolev V.P., Batov D.V. Differenciruyuschee zameschenie protiya deyteriem na svoystva rastvoriteley. Dokl. akad. nauk SSSR. 1987. T. 293, № 4. S. 882-884.

57. Ben-Naim A. Solvation Thermodynamics. New York: Springer. 1987. 246 p. DOI:https://doi.org/10.1007/978-1-4757-6550-2.

58. Wormald C.J. Water ‒ acetone association. Second virial cross coefficients for water ‒ acetone derived from gas phase excess enthalpy measurements. J. Chem. Thermodyn. 2002. V. 34. N 10. P. 1639-1646. DOI:https://doi.org/10.1016/S0021-9614(02)00225-2.

59. Khurma J.R., Fenby D.V. Calorimetric study of deuterium isotope effects in water – acetone systems, Austr. J. Chem. 1981. V. 34. N 3. P. 635-639. DOI: 10.1071/ CH9810635.

60. Ivanov E.V., Smirnov V.I. Water as a solute in aprotic dipolar solvents: 1. D2O‒H2O solute isotope effects on the enthalpy of water dissolution in acetone, tetrahydrofuran and 1,4-dioxane at 298.15 K. Thermochim. Acta. 2010. V. 511. N 1-2. P. 194-197. DOI:https://doi.org/10.1016/j.tca.2010.07.017.

61. Ivanov E.V., Smirnov V.I. Water as a solute in aprotic dipolar solvents: 2. D2O‒H2O solute isotope effects on the enthalpy of water dissolution in nitromethane, acetonitrile and propylene carbonate at 298.15 K. Thermochim. Acta. 2010. V. 511. N 1-2. P. 198-201. DOI:https://doi.org/10.1016/j.tca.2010.09.013.

62. Ivanov E.V., Smirnov V.I. Water as a solute in aprotic dipolar solvents: 3. D2O‒H2O solute isotope effects on the enthalpy of water dissolution in dimethylsulphoxide, N,N-dimethylformamide and N,N-dimethylacetamide at 298.15 K. Thermochim. Acta. 2011. V. 526. N 1-2. P. 257-261. DOI:https://doi.org/10.1016/j.tca.2011.09.009.

63. Duer W.C., Bertrand G.L. Thermochemical isotope effects. II. Methanol ‒ methanol-d, ethanol ‒ ethanol-d, and water ‒ water-d2 in selected solvents. J. Am. Chem. Soc. 1975. V. 97. N 14. P. 3894-3897. DOI:https://doi.org/10.1021/ja00847a003.

64. Batov D.V. Ental'piya sol'vatacii v nestrukturirovannyh rastvoritelyah: opredelenie strukturnogo vklada i issledovanie vliyaniya prirody rastvoritelya, temperatury i izotopnogo sostava na ental'pii sol'vatacii. Zhurn. obschey himii. 1998. T. 68. №. 2. S. 210-219.

65. Glew D.N., Watts H. Aqueous nonelectrolyte solutions. Part XII. Enthalpies of mixing of water and deuterium oxide with tetrahydrofuran. Can. J. Chem. 1973. V. 51. N 12. P. 1933-1940. DOI:https://doi.org/10.1139/v73-289.

66. Ohtaki H. An attempt to parameterize the structuredness of solvents. J. Solut. Chem. 1992. V. 21. N 1. P. 39-47. DOI:https://doi.org/10.1007/BF00648979.

67. Kustov A.V., Batov D.V., Usacheva T.R. Kalorimetriya rastvorov neelektrolitov: teoreticheskie osnovy, eksperiment, analiz dannyh / pod red. V.A. Sharnina. M.: Krasand, 2016. 288 s.

68. Vinogradova O.O., Abrosimov V.K. Termohimiya beskonechno razbavlennyh rastvorov vody v organicheskih rastvoritelyah. Sb. tez. dokl. 13-y vsesoyuz. konf. po him. termodinamike i kalorimetrii. 24-26 sentyabrya 1991 g. Krasnoyarsk: KGU, 1991. S. 92.

69. Korolev V.P., Batov D.V., Krestov G.A. Ental'piynye harakteristiki vody, metanola i etanola v rastvorah. Zhurn. obschey himii. 1991. T. 61. № 9. S. 1921-1927.

70. McTigue P., Renowden P.V. Thermodynamic properties of 1:1 adducts between water and various bases in carbon tetrachloride. J. Chem. Soc., Faraday Trans. 1. 1975. V. 71. P. 1784-1789. DOI:https://doi.org/10.1039/F19757101784.

71. Zaichikov A.M., Bushuev Yu.G., Krestov G.A. Determination of the intermolecular interaction parameters in the water ‒ amide systems based on the data of the excess thermodynamic functions. J. Therm. Anal. Calorim. 1995. V. 45. N 4. P. 687-693. DOI:https://doi.org/10.1007/BF02548883.

72. Abakshin V.A., Krestov G.A. Vliyanie prirody rastvoritelya na rastvorimost' malorastvorimyh elektrolitov v protonnyh i aprotonnyh dipolyarnyh rastvoritelyah. Dokl. akad. nauk SSSR. 1986. T. 291. № 5. S. 1135-1137.

73. Nikoforov M.Yu., Al'per A.G., Durov V.A., Korolev V.P., V'yugin A.I., Krestov G.A., Myasoedova V.V., Krestov A.G. Rastvory neelektrolitov v zhidkostyah. M.: Nauka, 1989. 263 s. (seriya «Problemy himii rastvorov»).

74. Cogley D.R., Falk M., Butler J.N., Grunwald E. Solvation and self-association of water in propylene carbonate. J. Phys. Chem. 1972. V. 76. N 6. P. 855-864. DOI:https://doi.org/10.1021/j100650a011.

75. Hayaki S., Sato H., Sakaki S. A theoretical study of the liquid structure of nitromethane with RISM method. J. Mol. Liq. 2009. V. 147. N 1-2. P. 9-12. DOI:https://doi.org/10.1016/j.molliq.2008.07.017.

76. Spencer J.N., Berger S.K., Powell C.R., Henning B.D., Furman G.S., Loffredo W.M., Rydberg E.M., Neubert R.A., Shoop C.E., Blauch D.N. Amide interactions in aqueous and organic medium. J. Phys. Chem. 1981. V. 85. N 9. P. 1236-1241. DOI: 10.1021/ j150609a028.

77. Borin I.A., Skaf M.S. Molecular association between water and dimethylsulfoxide in solution: A molecular dynamics simulation study. J. Chem. Phys. 1999. V. 110. N 13. P. 6412-6420. DOI:https://doi.org/10.1063/1.47854.

Login or Create
* Forgot password?