Yaroslavl, Yaroslavl, Russian Federation
Yaroslavl, Yaroslavl, Russian Federation
This article deals with the study of the nitration of 4-chloro-3-nitrobenzoic acid. The substrate is highly deactivated for SEAr reactions and therefore strict conditions are required (anhydrous KNO3 in concentrated H2SO4 at 165 °C for 10 hours). We have developed methods for the transformation of 4-chloro-3,5-dinitrobenzoic acid and its ester into new polycyclic systems containing pyridine or piperidine fragments by quaternization and reduction reactions.
4-chloro-3-nitrobenzoic acid, N-(2,6-dinitroaryl)pyridinium salts, N-(2,6-dinitroaryl)piperidines, nitration, pyridine quaternisation
1. Rehman A., Hussain M., Rehman Z., Ali S., Rauf A., Nasim F.H., Helliwell M. Self-assembled pentagonal bipyramidal and skew trapezoidal organotin(IV) complexes of substituted benzoic acids: Their antibacterial, antifungal, cytotoxic, insecticidal and urease inhibition activities // Inorg. Chim. Acta. 2011. Vol. 370. P. 27-35. DOI:https://doi.org/10.1016/j.ica.2011.01.007. URL: https://www.sciencedirect.com/science/article/pii/S0020169311000144
2. Gautam N., Goyal K., Saini O., Kumar A., Gautam D.C. Synthesis and biological activity of substituted 3 fluoro/3-trifluoromethyl 10H-phenothiazines, its ribofuranosides and sulfones // J. Fluor. Chem. 2011. Vol. 132. P. 420-426. DOI:https://doi.org/10.1016/j.jfluchem.2011.04.012. URL: https://www.sciencedirect.com/science/article/pii/S0022113911001230
3. Remes C., Paun A., Zarafu I., Tudose M., Caproiu M.T., Ionita G., Bleotu C., Matei L., Ionita P. Chemical and biological evaluation of some new antipyrine derivatives with particular properties // Bioorg. Chem. 2012. Vol. 41-42. P. 6-12. DOI:https://doi.org/10.1016/j.bioorg.2011.12.003. URL: https://www.sciencedirect.com/science/article/pii/S0045206811001064
4. Jangid D.K., Guleria A., Gautam D.C., Yadav H., Mathur M., Swami A.K. Antimicrobial studies, synthesis and characterization of novel 1-nitro-10H-phenothiazine bearing sulfone/nucleoside moieties // Nucleosides, Nucleotides and Nucleic Acids. 2019. Vol. 38. P. 533-549. DOI:https://doi.org/10.1080/15257770.2019.1576879. URL: https://www.tandfonline.com/doi/abs/10.1080/15257770.2019.1576879
5. Al-Hiari M., Qaisi A.M., El-Abadelah M.M., Voelter W. Synthesis and Antibacterial Activity of Some Substituted 3-(Aryl)- and 3-(Heteroaryl)indoles // Monatshefte für Chemie. 2006. Vol. 137. P. 243–248. DOI:https://doi.org/10.1007/s00706-005-0424-6. URL: https://link.springer.com/article/10.1007/s00706-005-0424-6
6. Gautam N., Gupta S., Ajmera N., Gautam D.C. Synthesis, Characterization, and Biological Evaluation of 10H-Phenothiazines, Their Sulfones and Ribofuranosides // J. Heterocycl. Chem. 2012. Vol. 49. P. 710-715. DOI: https:https://doi.org/10.1002/jhet.771. URL: https://onlinelibrary.wiley.com/doi/full/10.1002/jhet.771
7. Zhang B., Pang L., Nautiyal M., Graef S.D., Gadakh B., Lescrinier E., Rozenski J., Strelkov S.V., Weeks S.D., Aerschot A.V. Synthesis and Biological Evaluation of 1,3-Dideazapurine-Like 7-Amino-5-HydroxymethylBenzimidazole Ribonucleoside Analogues as Aminoacyl-tRNA Synthetase Inhibitors // Molecules. 2020. Vol. 25. P. 1-24. DOI:https://doi.org/10.3390/molecules25204751. URL: https://www.mdpi.com/1420-3049/25/20/4751
8. Sykes B.M., Atwell G.J., Hogg A., Wilson W.R., O’Connor C.J., Denny W.A. N-Substituted 2-(2,6-Dinitrophenylamino)propanamides: Novel Prodrugs That Release a Primary Amine via Nitroreduction and Intramolecular Cyclization // J. Med. Chem. 1999. Vol. 42. P. 346-355. DOI:https://doi.org/10.1021/jm960783s. URL: https://pubs.acs.org/doi/10.1021/jm960783s
9. Baguley T.D., Nairn A.C., Lombroso P.J., Ellman J.A. Synthesis of benzopentathiepin analogs and their evaluation as inhibitors of the phosphatase STEP // Bioorg. Med. Chem. Lett. 2015. Vol. 25. P. 1044-1046. DOI:https://doi.org/10.1016/j.bmcl.2015.01.020. URL: https://www.sciencedirect.com/science/article/pii/S0960894X15000323
10. Molteni V., He X., Nabakka J., Yang K., Kreusch A., Gordon P., Bursulaya B., Warner I., Shin T., Biorac T., Ryder N.S., Goldberg R., Doughtyc J., He Y. Identification of novel potent bicyclic peptide deformylase inhibitors // Bioorg. Med. Chem. Lett. 2004. Vol. 14. P. 1477–1481. DOI:https://doi.org/10.1016/j.bmcl.2004.01.014. URL: https://www.sciencedirect.com/science/article/pii/S0960894X04000502
11. Kojima T., Mochizuki M., Takai T., Hoashi Y., Morimoto S., Seto M., Nakamura M., Kobayashi K., Sako Y., Tanaka M., Kanzaki N., Kosugi Y., Yano T., Aso K. Discovery of 1,2,3,4-tetrahydropyrimido[1,2-a]benzimidazoles as novel class of corticotropin releasing factor 1 receptor antagonists // Bioorg. Med. Chem. 2018. Vol. 26. P. 2229-2250. DOI:https://doi.org/10.1016/j.bmc.2018.01.020. URL: https://www.sciencedirect.com/science/article/pii/S0968089617323374
12. Mochizuki M., Kori M., Kobayashi K., Yano T., Sako Y., Tanaka M., Kanzaki N., Gyorkos A.C., Corrette C.P., Cho S.Y., Pratt S.A., Aso K. Design and synthesis of benzimidazoles as novel corticotropin-releasing factor 1 receptor antagonists // J. Med. Chem. 2016. Vol. 59(6). P. 2551–2566. DOI:https://doi.org/10.1021/acs.jmedchem.5b01715. URL: https://pubs.acs.org/doi/10.1021/acs.jmedchem.5b01715
13. Zheng Z., Bhatia P., Daanen J., Kolasa T., Patel M., Latshaw S., Kouhen O.F.E., Chang R., Uchic M.E., Miller L. , Nakane M., Lehto S.G., Honore M.P., Moreland R.B., Brioni J.D., Stewart A.O. Structure-Activity Relationship of Triazafluorenone Derivatives as Potent and Selective mGluR1 Antagonists // J. Med. Chem. 2005. Vol. 48. P. 7374-7388. DOI:https://doi.org/10.1021/jm0504407. URL: https://pubs.acs.org/doi/10.1021/jm0504407
14. Filimonov S.I., Makarova E.S., Chirkova J.V., Kabanova M.V. Diastereomeric composition of the reaction of the formation of hexahydro-5h-chromeno[4,3-d]pyrimidin-5-ones // From Chemistry Towards Technology Step-By-Step. 2022. Vol. 3, iss. 1. P. 131-138. DOI:https://doi.org/10.52957/27821900_2022_01_131. URL: http://chemintech.ru/index.php/tor/2022tom3no1
15. Kotov A.D., Kunichkina A.S., Peoskurina I.K. Transformation of 5-halogen-3-aryl-2,1-benzisooxazoles into quinazolines // From Chemistry Towards Technology Step-By-Step. 2022. Vol. 2, iss. 4. P. 81-84. DOI:https://doi.org/10.52957/27821900_2021_04_81. URL: http://chemintech.ru/index.php/tor/2021-2-4
16. Begunov R.S., Sokolov A.A. One-pot Reduction and Halogenation of N-(2,4-dinitrophenyl)piperidine // From chemistry towards technology. Step-by-step. 2022. Vol. 3, iss. 2. P. 92-97. DOI:https://doi.org/10.52957/27821900_2022_02_92. URL: http://chemintech.ru/index.php/tor/2022tom3no2
17. Vitaku E., Smith D.T., Njardarson J.T. Analysis of the Structural Diversity, Substitution Patterns, and Frequency of Nitrogen Heterocycles among U.S. FDA Approved Pharmaceuticals // J. Med. Chem. 2014. Vol. 57, iss. 24. P. 10257-10274. DOI:https://doi.org/10.1021/jm501100b. URL: https://pubs.acs.org/doi/10.1021/jm501100b
18. Van Duin H. The separation and identification of normal aliphatic alcohols // Recueil des Travaux Chimiques des Pays-Bas. 1954. Vol. 73. P. 68-77. DOI:https://doi.org/10.1002/recl.19540730111. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/recl.19540730111.