DEVELOPMENT AND SYNTHESIS OF AMINO ACID DERIVATIVES OF N-METHYL ANALOGUE OF PROCAINE AND BENZOCAINE BASED ON PHARMACOPHORE FUSION STRATEGY
Abstract and keywords
Abstract (English):
Razrabotan racional'nyy sposob sinteza aminokislotnyh proizvodnyh N-metil'nogo analoga prokaina i benzokaina s ispol'zovaniem N,N-karbonildiimidazol'nogo metoda v rastvore. S ispol'zovaniem kompleksa programmnogo obespecheniya PASS bylo vypolneno prognozirovanie biologicheskoy aktivnosti serii gibridnyh soedineniy, poluchennyh sliyaniem aminoefirnyh i aminoanilidnyh anestetikov. Bylo pokazano, chto pri sliyanii farmokoforov u vseh gibridnyh soedineniy nablyudaetsya potencial'noe otsutstvie znachimoy gepatotoksichnosti s povysheniem urovnya srednesmertel'noy dozy kak pri vnutri-bryushinnom, tak i pri podkozhnom sposobah vvedeniya. Sintezirovannye soedineniya predstavlyayut interes v kachestve potencial'nyh terapevticheskih agentov s mestnoanesteziruyuschey aktivnost'yu v sochetanii s nizkoy toksichnost'yu.

Keywords:
benzokain, Boc-α-aminokisloty, N,N-karbonildiimidazol, 4-aminobenzoynaya kislota, mestnye anestetiki
Text
Text (PDF): Read Download
References

1. Vardanyan R., Hrybu V. Synthesis of Best-Seller Drugs. Chapter 2. Local Anesthetics. Academic Press. 2016. DOI:https://doi.org/10.1016/C2012-0-07004-4.

2. Becker D.E., Reed K.L. Local Anesthetics: Review of Pharmacological Considerations // Anesth. Prog. 2012. 59. P. 90-102. DOI:https://doi.org/10.2344/0003-3006-59.2.90.

3. Ruetsch Y.A., Bönibc T., Borgeat A. From Cocaine to Ropivacaine: The History of Local Anesthetic Drugs // Curr. Top. Med. Chem. 2001. Vol. 1. P. 175-182. DOI:https://doi.org/10.2174/1568026013395335.

4. Bezerra M.M., Leão R.A.C., Miranda L.S.M., De Souza R.O.M. A Brief History Behind the Most Used Local Anesthetic // Tetrahedron. 2020. Vol. 76, iss. 47. 131628. DOI:https://doi.org/10.1016/j.tet.2020.131628.

5. Kalinin D.V., Pantsurkin V.I., Syropyatov S.Y. et al. Synthesis, local anaesthetic and antiarrhythmic activities of N-alkyl derivatives of proline anilides // Eur. J. Med. Chem. 2013. Vol. 63. P. 144-150. DOI:https://doi.org/10.1016/j.ejmech.2013.02.003.

6. Yang Y., Li L., You Z., Zhang X. A convenient and highly enantioselective synthesis of (S)-2-pipecolic acid: an efficient access to caine anesthetics // Sunth. Commun. 2021. Vol. 51, iss. 20. P. 3084-3089. DOI:https://doi.org/10.1080/00397911.2021.1961155.

7. Costa J. C. S, Neves J.S. et al. Synthesis and antispasmodic activity of lidocaine derivatives endowed with reduced local anesthetic action // Bioorg. Med. Chem. Lett. 2008. Vol. 18. P. 1162-1166. DOI:https://doi.org/10.1016/j.bmcl.2007.11.122.

8. Ermohin V.A., Purygin P.P., Zarubin Yu.P. Adamantanovye proizvodnye efirov iamidov 4-aminobenzoynoykisloty // Vestnik SamGU. Estestvennonauchnaya seriya. 2006. № 9 (49). S. 92-96.

9. Dzhamanbaev Zh.A., Abdurashitova Yu.A., Sarymzakova R.K., Eralieva M.G. Sintez uglevodnyh proizvodnyh p-aminobenzoynoy kislot // Uspehi Sovremennogo estestvoznaniya. 2019. № 3. S. 127-132.

10. Ahirwar J., Ahirwar D., Lanjhiyana S. et al. Analgesic and Anti-inflammatory Potential of Merged Pharmacophore Containing 1,2,4-triazoles and Substituted Benzyl Groups via Thio Linkage // J. Heterocyclic Chem. 2018. Vol. 49, iss. 4. P. 726-731. DOIhttps://doi.org/10.1002/jhet.3258.

11. Zhang M., Wei W. et al. Discovery of novel pyrazolopyrimidine derivatives as potent TOR/HDAC bi-functional inhibitors via pharmacophore-merging strategy // Bioorg. Med. Chem. Lett. 2021. Vol. 49. 128286. DOI:https://doi.org/10.1016/j.bmcl.2021.128286.

12. Chen L., Geng H. et al. Rapid entry to bispiro heterocycles merging five pharmacophores using phase-transfer catalysis // Tetrahedron Lett. 2021. Vol. 78. 153276. DOI:https://doi.org/10.1016/j.tetlet.2021.15327.

13. Yanagimoto T., Kishimoto S., Kasai Y. et al. Design and synthesis of dual active neovibsanin derivatives based on a chemical structure merging method // Bioorg. Med. Chem. Lett. 2020. Vol. 30, iss. 20. 127497. DOI:https://doi.org/10.1016/j.bmcl.2020.127497.

14. Xu Q., Hu M., Li J. et al. Discovery of novel brain-penetrant GluN2B NMDAR antagonists via pharmacophore-merging strategy as anti-stroke therapeutic agents // Europ. Med. Chem. 2022. Vol. 227. 113876. DOI:https://doi.org/10.1016/j.ejmech.2021.113876.

15. Druzhilovskiy D.S., Rudik A.V., Filimonov D.A. et al. Computational platform Way2Drug: from the predic-tion of biological activity to drug repurposing // Rus. Chem. Bull. Inter. Ed. 2017. Vol. 66. № 10. P. 1832-1841. DOI:https://doi.org/10.1007/s11172-017-1954-x

16. Lagunin A., Zakharov A., Filimonov D., Poroikov V. QSAR Modelling of Rat Acute Toxicity on the Basis of PASS Prediction // Mol. Inf. 2011. Vol. 30. P. 241-250. DOI:https://doi.org/10.1002/minf.201000151.

17. Ivanov S.M., Lagunin A.A., Rudik A.A., Filimonov D.M. et al. ADVERPred – web service for prediction of adverse effects of drugs // J. Chem. Inf. Model. 2017. DOI:https://doi.org/10.1021/acs.jcim.7b00568.

18. Lagunin A., Filimonov D., Poroikov V. Multi-Targeted Natural Products Evaluation Based on Biological Activity Prediction with PASS // Current Pharmaceutical Design. 2010, Vol. 16, № 15. P. 1703-1717. DOI:https://doi.org/10.2174/138161210791164063.

19. Filimonov D.A., Lagunin A.A., Gloriozova T.A., Rudik A.V. et al. Prediction of the biological activity spectra of organic compounds using the pass online web resource // Chem. Heter. Compouds. 2014. Vol. 50. № 3. P. 444-457. DOIhttps://doi.org/10.1007/s10593-014-1496-1.

20. Spiridonova A.V., Uvarovskaya P.A., Krasnikova N.V, Krasnikov S.V., Rozaeva E.E. Korotkie N acildipeptidy s adamantilbenzoil'nym fragmentom s potencial'noy protivovirusnoy aktivnost'yu // Ot himii k tehnologii shag za shagom. 2021. T. 2, № 2. S. 60-68. DOI:https://doi.org/10.52957/27821900_2021_02_60. URL: http://chemintech.ru/index.php/tor/2021-2-2.

21. Hayrutdinov F.G, Ahtyamova Z.G, Golovin V.V., Knyazev A.V., Gafarov A.N., Gil'manov R.Z., Sobachkina T.N. Sintez lekarstvennyh veschestv: uchebno-metodicheskoe posobie. Kazan': Izd-vo KNITU, 2014. 136 s.

Login or Create
* Forgot password?