MODELLING OF RUBBER THERMAL DEGRADATION KINETICS DURING THE PYROLYSIS OF RUBBER WASTE
Abstract and keywords
Abstract (English):
The paper presents the kinetic model of polymer thermodegradation as applied to the process of pyrolysis of worn-out tyres and waste rubber products in an industrial reactor. We calculated the quantum-chemical changes of thermodynamic functions for the probable chemical reactions of mesh elastomer degradation. Solid fraction (carbon black and metal wastes) and vapor-gas mixture separated into three hydrocarbon fractions considered as the reaction products. We use a formal kinetic scheme when describing the kinetics of rubber degradation. It shows the mechanism of the process as a set of radical-chain reactions of polymer degradation. Each hydrocarbon fraction corresponds to a certain set of kinetic constants, the temperature dependences of which are assumed to be Arrhenius. The satisfactory agreement of the obtained calculated thermogravimetric de-pendences with the experimental data of different authors allowed us to approximate the rubber thermal degradation curves by the curves characterizing the general-purpose rubbers.

Keywords:
worn tyres, rubber waste, pyrolysis, kinetic model, quantum-chemical calculation
Text
Text (PDF): Read Download
References

1. Bandyopadhyay, S., Agrawal, S.L., Ameta, R., Dasgupta, S., Mukhopadhyay, R., Deuri, A.S. & Suresh, C. (2008) An Overview of Rubber Recycling, Progress in Rubber, Plastics and Recycling Technology, 24(2), pp. 73-112 [online]. Available at: https://doi.org/10.1177/147776060802400201

2. Sienkiewicz, M., Kucinska-Lipka, J., Janik, H. & Balas, A. (2012) Progress in used tyres management in the European Union: A review, Waste Management, 32(10), pp. 1742-1751 [online]. Available at: https://doi.org/10.1016/j.wasman.2012.05.010

3. Myhre, M., Saiwari, S., Dierkes, W. & Noordermeer, J. (2012) Rubber recycling: chemistry, processing, and applications, Rubber Chemistry and Technology, 85(3), pp. 408–449 [online]. Available at: https://doi.org/10.5254/rct.12.87973

4. Roy, C., Chaala, A. & Darmstadt, H. (1999) The vacuum pyrolysis of used tires: End-uses for oil and carbon black products, Journal of Analytical and Applied Pyrolysis, 51(1-2), pp. 201-221 [online]. Available at: https://doi.org/10.1016/S0165-2370(99)00017-0

5. Kaminsky, W., Mennerich, C. & Zhang, Z. (2009) Feedstock recycling of synthetic and natural rubber by pyrolysis in a fluidized bed, Journal of Analytical and Applied Pyrolysis, 85(1-2), pp. 334-337 [online]. Available at: https://doi.org/10.1016/j.jaap.2008.11.012

6. Czajczyńska, D., Czajka, K., Krzyżyńska & R., Jouhara, H. (2020) Waste tyre pyrolysis – Impact of the process and its products on the environment, Thermal Science and Engineering Progress, 20, 100690 [online]. Available at: https://doi.org/10.1016/j.tsep.2020.100690

7. Khalil, U., Vongsvivut, J., Shahabuddin, M., Samudrala, S.P., Srivatsa, S.C. & Bhattacharya, S. (2020) A study on the performance of coke resistive cerium modified zeolite Y catalyst for the pyrolysis of scrap tyres in a two-stage fixed bed reactor, Waste Management, 102, pp. 139-148 [online]. Available at: https://doi.org/10.1016/j.wasman.2019.10.029

8. Hijazi, A., Al-Muhtaseb, A.H., Aouad, S., Ahmad, M.N. & Zeaiter, J. (2019) Pyrolysis of Waste Rubber Tires with Palladium Doped Zeolite, Journal of Environmental Chemical Engineering, 7(6), 103451 [online]. Available at: https://doi.org/10.1016/j.jece.2019.103451

9. Wang, F., Gao, N., Quan, C. & López, G. (2019) Investigation of Hot Char Catalytic Role in the Pyrolysis of Waste Tires in a Two-step Process, Journal of Analytical and Applied Pyrolysis, 146, 104770 [online]. Available at: https://doi.org/10.1016/j.jaap.2019.104770

10. Islam, M.R., Parveen, M., Haniu, H. & Sarker, M.R.I. (2010) Innovation in Pyrolysis Technology for Management of Scrap Tire: a Solution of Energy and Environment, International Journal of Environmental Science and Development, 1(1), pp. 89-96. DOI:https://doi.org/10.7763/IJESD.2010.V1.18.

11. Yaqoob, H., Teoh, Y.H., Ahmad, M. & Gulzar, M. (2021) Potential of tire pyrolysis oil as an alternate fuel for diesel engines: A review, Journal of the Energy Institute, 96, pp. 205-221 [online]. Available at: https://doi.org/10.1016/j.joei.2021.03.002

12. Mikulski, M., Ambrosewicz-Walacik, M., Hunicz, J. & Nitkiewicz, S. (2021) Combustion engine applications of waste tyre pyrolytic oil, Progress in Energy and Combustion Science, 85, 100915 [online]. Available at: https://doi.org/10.1016/j.pecs.2021.100915

13. Yaqoob, H., Teoh, Y.H., Sher, F., Jamil, M.A., Nuhanović, M., Razmkhah, O. & Erten, B. (2021) Tribological Behaviour and Lubricating Mechanism of Tire Pyrolysis Oil, Coatings, 11, 386, pp. 1-13 [online]. Available at: https://doi.org/10.3390/coatings11040386

14. Kyari, M., Cunliffe, A. & Williams, P.T. (2005) Characterization of Oils, Gases, and Char in Relation to the Pyrolysis of Different Brands of Scrap Automotive Tires, Energy & Fuels, 19, pp. 1165-1173. URL: https://doi.org/10.1021/ef049686x

15. Pavlova, A., Stratiev, D., Mitkova, M., Stanulov, K., Dishovsky, N. & Georgiev, K. (2015) Gas Chromatography-Mass Spectrometry for Characterization of Liquid Products from Pyrolysis of Municipal Waste and Spent Tyres, Acta Chromatographica, 1, pp. 1-19 [online]. Available at: https://doi.org/10.1556/achrom.27.2015.4.5

16. Campuzano, F., Jameel, A.G.A, Zhang, W., Emwas, A.-H., Agudelo, A.F., Martínez, J.D. & Mani Sara-thy, S.M. (2020) Fuel and Chemical Properties of Waste Tire Pyrolysis Oil Derived from a Continuous Twin-Auger Reactor, Energy & Fuels, 34(10), pp. 12688–12702 [online]. Available at: https://doi.org/10.1021/acs.energyfuels.0c02271

17. Abedeen, A., Hossain, M.S., Som, U. & Moniruzzaman, M.D. (2021) Catalytic cracking of scrap tire-generated fuel oil from pyrolysis of waste tires with zeolite ZSM-5, International journal of sustainable engineering, 14(6), pp. 2025-2040 [online]. Available at: https://doi.org/10.1080/19397038.2021.1951883

18. Mkhize, N.M., Danon, B., van der Gryp, P. & Görgens, J.F. (2019) Kinetic study of the effect of the heating rate on the waste tyre pyrolysis to maximise limonene production, Chemical Engineering Research and Design, 152, pp. 363–371 [online]. Available at: https://doi.org/10.1016/j.cherd.2019.09.036

19. Nkosi, N., Muzenda, E., Mamvura, T.A., Belaid, M. & Patel, B. (2020) The Development of a Waste Tyre Pyrolysis Production Plant Business Model for the Gauteng Region, South Africa, Processes, 8(7), pp. 766-774 [online]. Available at: https://doi.org/10.3390/pr8070766

20. Rani, S. & Agnihotri, R. (2014) Recycling of scrap tyres, International Journal of Materials Science and Applications, 3(5), pp. 164-167 [online]. Available at: https://doi.org/10.11648/j.ijmsa.20140305.16

21. Hohenberg, P. & Kohn, W. (1964) Inhomogeneous Electron Gas, Phys. Rev., 136, 3B, pp. B864-B871 [online]. Available at: https://doi.org/10.1103/PhysRev.136.B864

22. Kohn, W. & Sham, L.J. (1965) Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev., 140, 4A, pp. A1133-A1138 [online]. Available at: https://doi.org/10.1103/PhysRev.140.A1133

23. Becke, A.D. (1993) Densityfunctional thermochemistry. III. The role of exact exchange, J. Chem. Phys., 98(7), pp. 5648–5652 [online]. Available at: https://doi.org/10.1063/1.462066

24. Neese, F. (2017) Software update: the ORCA program system, version 4.0, Wiley Interdiscip. Rev.: Comput. Mol. Sci., 8, e1327 [online]. Available at: https://doi.org/10.1002/wcms.1327

25. Broyden, C.G. (1970) The convergence of a class of double-rank minimization algorithms, Journal of Applied Mathematics, 6, pp. 76–90 [online]. Available at: https://doihttps://doi.org/10.1093/imamat/6.1.76

26. Fletcher, R.A. (1970) New Approach to Variable Metric Algorithms, Computer Journal, 13(3), pp. 317–322 [online]. Available at: https://doihttps://doi.org/10.1093/comjnl/13.3.317

27. Goldfarb, D.A. (1970) Family of Variable-metric methods Updates Derived by Variational Means, Mathematics of Computation, 24(109), pp. 23–26 [online]. Available at: https://doihttps://doi.org/10.1090/S0025-5718-1970-0258249-6

28. Shanno, D.F. (1970) Conditioning of quasi-Newton methods for function minimization, Mathematics of Computation, 24(111), pp. 647–656 [online]. Available at: https://doihttps://doi.org/10.1090/S0025-5718-1970-0274029-X

29. Mueller, M. (2002) Fundamentals of Quantum Chemistry. Molecular Spectroscopy and Modern Electronic Structure Computation. New York (NY): Kluwer Academic publisher [online]. Available at: https://doi.org/10.1063/1.1535013

30. Varvarkin, S.V., Soloviev, M.E. & Gerasimova, N.P. (2022) Quantum-chemical study of the carboxylation reaction of 4-aminophenol, 4-acetylaminophenol and their salts in the synthesis of 5-aminosalicylic acid, From Chemistry Towards Technology Step-By-Step, 3(3), pp. 27-33. DOI:https://doi.org/10.52957/27821900_2022_03_27 [online]. Available at: https://drive.google.com/file/d/1k3uNF_opZcwn_-W9gFfgZ6o4PLJ3BBSf/view (in Russian).

31. Lin, J.-P., Chip Yuan, Chang, C., Wu, C.-H. & Shih, S.-M. (1996) Thermal degradation kinetics of polybutadiene rubber, Polymer Degradation and Stability, 53, pp. 295-300 [online]. Available at: https://doi.org/10.1016/0141-3910(96)00098-5

32. McCreedy, K. & Keskkula, H. (1979) Effect of thermal crosslinking on decomposition of polybutadiene, Polymer, 20, pp. 1155-1159 [online]. Available at: https://doi.org/10.1016/0032-3861(79)90309-4

Login or Create
* Forgot password?