Moscow, Moscow, Russian Federation
Ivanovo, Ivanovo, Russian Federation
Nanotechnologies play an important role in the modern world economy. As they deal, as a rule, together with other convergent (nano-, bio-, info-, cognitive) technologies. This connection causes a synergy effect, i.e. non linear development of innovations. The growth dynamics of the world's nanotechnology products is impressive. The world market of nanotechnologies in 2021 was 85 billion dollars, in 2024 (plan) will be 140 billion dollars. The forecast for 2030 is $288 billion. The production of nanoparticles of different nature and their use in different industries, fields of science, and technology takes a special place in nanotechnology. Both nanotechnology itself and the production and application of nanoparticles are interdisciplinary and cross-sectoral ones. Their users and customers are developed industries, including the textile industry. Metal nanoparticles are used both in the form of colloidal solutions and as part of microcapsules containing functional substances of different nature in the core. The article considers some methods of obtaining metal nanoparticles and microcapsule synthesis. The authors list the technologies of microcapsules application for textile functionalization.
nanoparticles, silver nanoparticles, microcapsules, polyelectrolytes, functional substances, acaricidal-repellent substances, aromatic substances
1. Tanveer, H. (2018) Nanotechnology applications in textiles, World textile & clothing trade, (1), pp. 1-3.
2. Krichevsky, G.E. (2022) Basics of Nanotechnologies. Moscow: Green Print (in Russian)
3. Krichevsky, G.E. (2011) Nano-, bio-, chemical technologies and production of new generation for fibres, textiles and clothes. Moscow: Izvestia (in Russian)
4. Krichevsky, G.E. (2017) NBICS-technologies for Peace and War. Moscow: Lambert (in Russian)
5. Pham, V.P. (2022) XXI Century Nanostructured Materials, Physics, Chemistry, Classification, and Emerging Applications in Industry, Biomedicine, and Agriculture. 388 p. DOI:https://doi.org/10.5772/intechopen.94802 [online]. Available at: https://directory.doabooks.org/handle/20.500.12854/90255 (accessed 12.09.2023)
6. Schröfel, A., Kratoshova, G. & Prokop, A. (2014) Biosynthesis of metal nanoparticles and their application in intracellular delivery. Fundamental biomedical technologies, Journal of Nanotechnology. The Netherlands: Dordrecht, pp. 373–409. DOI:https://doi.org/10.1007/978-94-007-1248-5_14.
7. Dmitrieva, A.D., Kuzmenko, V.A., Odintsova (Petrova), L.S. & Odintsova, O.I. 2015Synthesis and use of silver nanoparticles for giving textile materials bactericidal properties, Rossijskij kximicheskij zhurnal, (2), pp. 58 (in Russian).
8. Petrova, L.S., Lipina, A.A., Zaitseva, A.O. & Odintsova, O.I. (2018) Use of silver nanoparticles for giving textile materials bactericidal properties, Izv. vuzov. Texnologiyatekstil`nojpromy`shlennosti, (6), pp. 81-85 (in Russian); EDN: https://elibrary.ru/ZKXWYH
9. Odintsova, O.I., Antonova, A.S. & Kozlova, O.V. (2019) Application of silver nanoparticles for modifying the properties of textile materials, Vestnik texnologicheskogo universiteta Tadzhikistana, (37), pp. 19-22 (in Russian); EDN: https://elibrary.ru/TOOWYF
10. Krichevsky, G.E. (2019) Green and nature-like technologies - the basis of sustainable development for future generations. Moscow: Green Print (in Russian).
11. Krichevsky, G.E. Nanofibres, Big Russian Encyclopaedia: scientific and educational portal [online]. Available at: https://bigenc.ru/c/nanovolokna-6dde58/?v=8309628 (accessed 12.09.2023)
12. Venugopal, J., & Ramakrishna, S. (2005) Applications of polymer nanofibers in biomedicine and biotechnology, Applied Biochemistry and Biotechnology, 125(3), pp. 147-157. DOI:https://doi.org/10.1385/ABAB:125:3:147.; DOI: https://doi.org/10.1385/abab:125:3:147; EDN: https://elibrary.ru/BTBRJB
13. Huang, Z., Zhang, Y., Kotaki, M. & Ramakrishna, S. (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites, Composites Science and Technology, 63(15), pp. 2223-2253. DOI:https://doi.org/10.1016/S0266-3538(03)00178-7.; ; EDN: https://elibrary.ru/MBKQUF
14. Pham, P.V. (2022) XXI Century Nanostructured Materials - Physics, Chemistry, Classification, and Emerging Applications in Industry, Biomedicine, and Agriculture. Publisher: IntechOpen, p. 388. DOI:https://doi.org/10.5772/intechopen.94802.
15. Zeng, J., Xu, X., Chen, X., Liang, Q., Bian, X., Yang, L. & Jing, X. (2003) Biodegradable electrospun fibers for drug delivery, Control Release, 92(3), pp. 227-231. DOI:https://doi.org/10.1016/S0168-3659(03)00372-9.; ; EDN: https://elibrary.ru/KIQHKN
16. Yu, H., Jiao, Z., Hu, H., Lu, G., Ye, J. & Bi, Y. (2013) Fabrication of Ag3PO4-PAN composite nanofibers for photocatalytic applications, Crystengcomm, 15(7), pp. 4802-4805. DOI:https://doi.org/10.1039/c3ce00073g.
17. Botes, M. & Cloete, T.E. (2010) The potential of nanofibers and nanobiocides in water purification, Critical Reviews in Microbiology, 36(1), pp. 68-81. DOI:https://doi.org/10.3109/10408410903397332.; ; EDN: https://elibrary.ru/MYIBQN
18. Rivero, P.J., Urrutia, A., Goicoechea, J. & Arregui, F.J. (2015) Nanomaterials for Functional Textiles and Fibers, Nanoscale Research Letters, 10(1), pp. 501. DOI:https://doi.org/10.1186/s11671-015-1195-6.; ; EDN: https://elibrary.ru/WSGRFB
19. Gerber, L.C., Mohn, D., Fortunato, G., Astasov-Frauenhoffer, M., Imfeld, T., Waltimo, T., Zehnder, M. & Stark, W.J. (2011) Incorporation of reactive silver-tricalcium phosphate nanoparticles into polyamide 6 allows preparation of self-disinfecting fibers, Polymer Engineering and Science, 51(1), pp. 71–77. DOI:https://doi.org/10.1002/pen.21779.; ; EDN: https://elibrary.ru/OBYAQT
20. Gao, Q., Zhu, Q., Guo, Y. & Yang, C.Q. (2009) Formation of highly hydrophobic surfaces on cotton and polyester fabrics using silica sol nanoparticles and nonfluorinatedalkylsilane, Industrial and Engineering Chemistry Research, 48(22), pp. 9797–9803. DOI:https://doi.org/10.1021/ie9005518.
21. El-Hady, M.M.A., Farouk, A. & Sharaf, S. (2012) Flame retardancy and UV protection of cotton based, fabrics using nanoZnO and polycarboxylic acids, Carbohydrate Polymers, 92(1), pp. 400–406. DOI:https://doi.org/10.1016/j.carbpol.2012.08.085.
22. Apaydin, K., Laachachi, A., Ball, V., Jimenez, M., Bourbigot, S. & Ruch, D. (2021) Layer-by-layer deposition of a TiO2-filled intumescent coating and its effect on the flame retardancy of polyamide and polyester fabrics, Colloids and Surfaces A: Physicochemical and Engineering Aspects, (469), pp. 1–10. DOI:https://doi.org/10.1016/j.colsurfa.2014.12.021.; ; EDN: https://elibrary.ru/YFCUIF
23. Erzunov, K.A., Odintsova, O.I., Tregubov, A.V., Ilyicheva, M.D. & Lipina, A.A. (2023) Obtaining nanoscale zinc-containing polyfunctional coatings on textile materials, Izvestiya vuzov. Khimiya i khim. texnologiya, (9), pp. 89-95 (in Russian).; DOI: https://doi.org/10.6060/ivkkt.20236609.6825; EDN: https://elibrary.ru/ABPWGD
24. Venkatraman, P.D., Sayed, U., Parte, S. & Korgaonkar, S. (2021) Development of Advanced Textile Finishes Using Nano-Emulsions from Herbal Extracts for Organic Cotton Fabrics, Coatings, 11(8), pp. 939. DOI:https://doi.org/10.3390/coatings11080939.
25. Camlibel, N.O., Mete, G., Aksit, A., Kutlu, B. & Çelik, E. (2021)Water- and Oil-Repellency Properties of Cotton Fabric Treated with Silane, Zr, Ti based Nanosols, International Journal of Textile Science, 4(4), pp. 84 96. DOI:https://doi.org/10.5923/j.textile.20150404.03.
26. Krolevets, A.A., Tyrsin, Yu.A. & Bykovskaya, E.E. (2006) Application of nano- and microencapsulation in pharmaceuticals and food industry, Vestnik Rossijskoj akademii estestvenny`x nauk, (1), pp. 77-84 (in Russian).
27. Ghosh, S.K. (2006) Functional Coatings by Polymer Microencapsulation, Wiley VCH, 1(1), pp. 378.
28. Valle, J.A.B., Valle, R.D.C.S.C., Bierhalz, A.C.K., Bezerra, F.M., Hernandez, A.L. & Lis Arias, M.J. (2020) Chitosan Microcapsules: Methods of The Production and Use in the Textile Finishing, Applied Polymer Science, 138(1), pp. 1. DOI:https://doi.org/10.1002/app.50482.
29. Bah, M.G., Bilal, H.M. & Wang, J. (2020) Fabrication and Application of Complex Microcapsules: A Review, Soft Matter, 16(3), pp. 570–590. DOI:https://doi.org/10.1039/c9sm01634a.; ; EDN: https://elibrary.ru/TQUMGC
30. Ozkan, G., Franco, P., De Marco, I., Xiao, J. & Capanoglu, E. (2018) A Review of Microencapsulation Methods for food Antioxidants: Principles, Advantages, Drawbacks and Applications, Food Chemistry, 272(1), pp. 494-506. DOI:https://doi.org/10.1016/j.foodchem.2018.07.205.
31. Suganya, V. & Anuradha, V. (2017) Microencapsulation and Nanoencapsulation: A Review, International Journal of Pharmaceutical and Clinical Research, 9(3), pp. 233-239. DOI:https://doi.org/10.25258/IJPCR.V9I3.8324.
32. Kaushik, P., Dowling, K., Barrow, C.J. & Adhikari, B. (2014) Microencapsulation of Omega–3 Fatty Acids: A Review of Microencapsulation and Characterization Methods, Journal of Functional Foods, 19(1), pp. 868 881. DOI:https://doi.org/10.1016/j.jff.2014.06.029.; ; EDN: https://elibrary.ru/VGWLOZ
33. Jamekhorshid, A., Sadrameli, S.M. & Farid, M. (2014) A Review of Microencapsulation Methods of Phase Change Materials (PCMs) as a Thermal Energy Storage (TES) Medium, Renewable and Sustainable Energy Reviews, 31(1), pp. 531-542. DOI:https://doi.org/10.1016/j.rser.2013.12.033.
34. Silva, P.T. (2014) Microencapsulation: concepts, mechanisms, methods and some applications in food technology, Ciência Rural, 44(7), pp. 1304-1311. DOI:https://doi.org/10.1590/0103-8478cr20130971.
35. Salaün, F. (2016) Microencapsulation technology for smart textile coatings, Active Coatings for Smart Textiles, pp. 179-220. DOI:https://doi.org/10.1016/B978-0-08-100263-6.00009-5.; ; EDN: https://elibrary.ru/WULYWP
36. Pate, K.R., Mukesh, J. & Tarak Mehta, J. (2011) Micriencapsulation: Review on Novel Approaches, International Journal of Pharmacy & Technology, 3(1), pp. 894–911.
37. Suganya, V. & Anuradha, V. (2017) Microencapsulation and nanoencapsulation: a review, International Journal of Pharmaceutical and Clinical Research, 9(3), pp. 233-239. DOI:https://doi.org/10.25258/ijpcr.v9i3.8324.
38. Gurny, R., Peppas, N.A., Harrington, D.D. & Banker, G.S. (2008) Development of biodegradable and injectable latices for controlled release of potent drugs, Drug development and industrial pharmac, 7(1), pp. 1 25. DOI:https://doi.org/10.3109/03639048109055684.
39. Jain, N.K. (1997) Controlled and novel drug delivery. CBS: Publishers & distributors, pp. 236-237.
40. Gibbs, F., Kermasha, S., Alli, I. & Mulligan, C.N. (1999) Encapsulation in the food industry: a review, International journal of food sciences and nutrition, 50(3), pp. 213-224. DOI:https://doi.org/10.1080/096374899101256.
41. Yang, L., Paulson, A.T. Effects of lipids on mechanical and moisture barrier properties of edible gellan film, Food research international, 33(7), pp. 571-578. DOI:https://doi.org/10.1016/S0963-9969(00)00093-4.
42. Yingngam, B., Kacha, W., Rungseevijitprapa, W., Sudta, P., Prasitpuriprecha, C. & Brantner, A. (2019) Response Surface Optimization of Spray–Dried Citronella Oil Microcapsules with Reduced Volatility and Irritation for Cosmetic Textile Uses, Powder Technology, (355), pp. 372–385. DOI:https://doi.org/10.1016/j.powtec.2019.07.065.
43. Yang, Z., Zeng, Z., Xiao, Z. & Ji, H. (2014) Preparation and Controllable Release of Chitosan/Vanillin Microcapsules and their Application to Cotton Fabric, Flavour and Fragrance Journal, 29(2), pp. 114–120. DOI: 10.1002 /ffj.3186.
44. Babtsov, V., Shahirj, Yu. & Kvitnitsky, E. (2005) Method of microencapsulation. US6932984B1 USA.
45. Jyothi, N.V.N., Prasanna, P.M., Sakarkar, S.N., Prabha, K.S., Ramaiah, P.S. & Srawan, G.Y. (2010) Microencapsulation techniques, factors influencing encapsulation efficiency, Journal of Microencapsulation, 27(3), pp. 187–197. DOI:https://doi.org/10.3109/02652040903131301.
46. Matijević, I., Bischof, S. & Pušić, T. (2016) Cosmetic preparations on textiles: Cosmetotextiles, Tekstil: časopis za tekstilnu i odjevnu tehnologiju, 65(1-2) [online]. Available at: https://hrcak.srce.hr/166358. (accessed 03.10.2023).
47. Abbaspoor, S., Ashrafi, A. & Salehi, M. (2018) Synthesis and characterization of ethyl cellulose micro/nanocapsules using solvent evaporation method, Colloid and Polymer Science, 296(3), pp. 1509–1514. DOI:https://doi.org/10.1007/s00396-018-4371-2.; ; EDN: https://elibrary.ru/BXVHQP
48. Teeka, P., Chaiyasat, A. & Chaiyasat, P. (2014) Preparation of Poly (methyl methacrylate) Microcapsule with Encapsulated Jasmine Oil, Energy Procedia, 56(1), pp. 181–186. DOI:https://doi.org/10.1016/j.egypro.2014.07.147.
49. Podgornik, B. & Starešinič, M. (2016) Microencapsulation Technology and Applications in Added–Value Functional Textiles, Journal Physical Sciences Reviews, 1(1), pp. 80-103. DOI:https://doi.org/10.1515/psr-2015-0003.
50. Starešinič, M., Šumiga, B. & Boh, B. (2011) Microencapsulation for Textile Applications and Use of SEM Image Analysis for Visualisation of Microcapsules, Tekstilec, 54(4-6), pp. 80–103 [online]. Available at: https://eposlink.com/ru/catalog/library/elibrary/book/56011/publication/150413/ (accessed 23.09.2023).; EDN: https://elibrary.ru/PGWHEP
51. Boh, B., Knez, E. & Starešinič, M. (2006) Microcapsules in Textile Industry, Microcapsule Patents and Products, 6(1), pp. 235–269.
52. Saraç, E.G., Öner, E. & Kahraman, M.V. (2018) Microencapsulated Organic Coconut Oil as a Natural Phase Change Material for Thermo–Regulating Cellulosic Fabrics, Cellulose, 26(1), pp. 8939-8950.
53. Rani, S. & Goel, A. (2011) Microencapsulation Technology in Textiles: A Review Study, Pharma Innovation Journal, 10(1), pp. 660–663.
54. Gurny, R., Peppas, N.A., Harrington, D.D. & Banker, G.S. (1981) Development of biodegradable and injectable latices for controlled release of potent drugs, Drug development and industrial pharmacy, 7(1), pp. 1 25.
55. Menshutina, N.V. (2014) Encapsulation technologies, Farmacevticheskie texnologii i upakovka, 1(5), pp. 30 33 (in Russian); EDN: https://elibrary.ru/AEIWMI
56. Donath, E. (1998) Novel hollow polymer shells by colloid-templated assembly of polyelectrolytes, Angewandte Chemie International Edition, 37(16), pp. 2201-2205.
57. Sukhorukov, G.B. (1998) Layer-by-layer self-assembly of polyelectrolytes on colloidal particles, Colloids and Surfaces A: physicochemical and engineering aspects, 137(1-3), pp. 253-266. DOI:https://doi.org/10.1016/S0927-7757(98)00213-1.; ; EDN: https://elibrary.ru/LEPFTF
58. Decher, G. & Hong, J.D. (1991) Buildup of ultrathinmultilayer films by a self-assembly process, 1 consecutive adsorption of anionic and cationic bipolar amphiphiles on charged surfaces, Makromolekulare Chemie, 46(1), pp. 321-327. DOI:https://doi.org/10.1002/masy.19910460145.
59. Antipov, A.A., Sukhorukov, G.B. & Donath, E. (2001) Sustained release properties of polyelectrolyte multilayer capsules, The Journal of Physical Chemistry. B, 105(12), pp. 2281-2284. DOI:https://doi.org/10.1021/jp002184+; ; EDN: https://elibrary.ru/LXUHPN
60. Chen, J., Huang, L., Ying, L., Luo, G., Zhao, X. & Cao W. (1999) Self-assembly ultrathin films based on diazoresins, Langmuir, 15(1), pp. 7208-7212. DOI:https://doi.org/10.1016/S0379-6779(02)00200-X.; DOI: https://doi.org/10.1021/la981668i; EDN: https://elibrary.ru/XNQLQP
61. Kharlampieva, E., Kozlovskaya, V. & Sukhishvil, S.A. (2009) Layer-by-layer hydrogen-bonded polymer films: from fundamentals to applications, Advanced Materials, 21(1), pp. 3053-3065.
62. Mauser, T., Déjugnat, C. & Sukhorukov, G.B. (2006) Balance of hydrophobic and electrostatic forces in the pH response of weak polyelectrolyte capsules, The Journal of Physical Chemistry B, (110), pp. 20246-20253.; DOI: https://doi.org/10.1021/jp063502t; EDN: https://elibrary.ru/MIQRCJ
63. Ikeda, A., Hatano, T., Shinkai, S., Akiyama, T. & Yamada, S. (2001) Efficient photocurrent generation in novel self-assembled multilayers comprised of fullerene- cationic homooxacalixarene inclusion complex and anionic porphyrin polymer, J. Am. Chem. Soc., 123(20), pp. 4855–4856.
64. Guzmán, E. (2017) Layer-by-Layer polyelectrolyte assemblies for encapsulation and release of active compounds, Advances in colloid and interface science, (249), pp. 290-307.; DOI: https://doi.org/10.1016/j.cis.2017.04.009; EDN: https://elibrary.ru/YGXBBW
65. Wang, W., Zhao, Y., Yan, B.-B., Dong, L., Lu, Y. & Yu, S.-H. (2018) Calcium carbonate-doxorubicin silica-indocyanine green nanospheres with photo-triggered drug delivery enhance cell killing in drug-resistant breast cancer cells, Nano Research, (11), pp. 3385–3395. DOI:https://doi.org/10.1007/s12274-017-1950-3.; ; EDN: https://elibrary.ru/XNWSCS
66. Chesneau, C., Larue, L. & Belbekhouche, S. (2023). Design of Tailor-Made Biopolymer-Based Capsules for Biological Application by Combining Porous Particles and Polysaccharide Assembly, Pharmaceutics,15(6), pp. 1718-1730. DOI:https://doi.org/10.3390/pharmaceutics15061718.; ; EDN: https://elibrary.ru/PWSEJZ
67. Song, Z., Liu, Y., Shi, J., Ma, T., Zhang, Z., Ma, H. & Cao, S. (2018) Hydroxyapatite/mesoporous silica coated gold nanorods with improved degradability as a multi-responsive drug delivery platform, Materials Science and Engineering, (83), pp. 90–98.
68. Geest, D., Jonas, A.M. & Demeester, J. (2006) Glucose Responsive Polyelectrolyte Capsules, Langmuir, (22), pp. 5070-5074.; DOI: https://doi.org/10.1021/la053368o; EDN: https://elibrary.ru/LSIGQZ
69. Odintsova, O.I., Rumyantsev, E.V., Smirnova, A.S., Petrova, L.S. & Rumyantseva, V.E. (2021) Microencapsulation of biologically active substances using biocompatible polyelectrolytes, Izvestiya vuzov. Texnologiya tekstil`noj promy`shlennosti, 391(1), pp. 60-65. DOI:https://doi.org/10.47367/0021-3497_2021_1_60 (in Russian).; ; EDN: https://elibrary.ru/FNPTFN
70. Kuzmenko, V.A., Odintsova, O.I. & Rusanova, A.I. (2014) Properties of synthetic polyelectrolytes and prospects of their application for finishing of textile materials, Zhurnal prikladnoj khimii, 87(9), pp. 1193-1203 (in Russian).; EDN: https://elibrary.ru/MBNECO
71. Gao, C.Y. (2001) The decomposition process of melamine formaldehyde cores: the key step in the fabrication of ultrathin polyelectrolyte multilayer capsule, Macromolecular Materials and Engineering, 286(6), pp. 355-361.
72. Shenoy, D.B. (2003) Layer-by-layer engineering of biocompatible, decomposable core − shell structures, Biomacromolecules, 4(2), pp. 265-272.; DOI: https://doi.org/10.1021/bm025661y; EDN: https://elibrary.ru/MCOLKF
73. Antipov, A.A. (2003) Carbonate microparticles for hollow polyelectrolyte capsules fabrication, Colloids and surfaces A: physicochemical and engineering aspects, 224(1-3), pp. 175-183.; DOI: https://doi.org/10.1016/S0927-7757(03)00195-X; EDN: https://elibrary.ru/LHWMMF
74. Moya, S. (2001) Polyelectrolyte multilayer capsules templated on biological cells: core oxidation influences layer chemistry, Colloids and Surfaces A: Physicochemical and Engineering Aspects, (183), pp. 27-40
75. Volodkin, D.V. (2004) Matrix polyelectrolyte microcapsules: new system for macromolecule encapsulation, Langmuir, 20(8), pp. 3398-3406.; DOI: https://doi.org/10.1021/la036177z; EDN: https://elibrary.ru/LILQDP
76. Xiang, L. (2002) Influence of chemical additives on the formation of super-fine calcium carbonate, Powder Technology, 126(2), pp. 129-133.; DOI: https://doi.org/10.1016/S0032-5910(02)00047-5; EDN: https://elibrary.ru/KGSWCB
77. Petrova, L.S., Kozlova, O.V., Vladimirtseva, E.L., Smirnova, S.V., Lipina, A.A. & Odintsova, O.I. (2021) Development of Multifunctional Coating of Textile Materials Using Silver Microencapsulated Compositions, Coatings, 1(11), pp. 159. DOI:https://doi.org/10.3390/coatings11020159.; ; EDN: https://elibrary.ru/FXITEW
78. Odintsova, O.I., Petrova, L.S. & Kozlova, O.V. (2018) Microencapsulation of biologically active substances and their use for functionalisation of textile materials, Izvestiya vuzov. Texnologiya tekstil`noj promy`shlennosti, 1(4), pp. 85-89 (in Russian).; EDN: https://elibrary.ru/VMQFDM
79. Albahrani, A.A. & Greaves, R.F. 2016. Fat-soluble vitamins: clinical indications and current challenges for chromatographic measurement, The Clinical Biochemist Reviews, 37(1), pp. 27-47.
80. Wijekoon, M.M. J.O. (2023) Recent advances in encapsulation of fat-soluble vitamins using polysaccharides, proteins, and lipids: a review on delivery systems, formulation, and industrial applications, International Journal of Biological Macromolecules, pp. 124539.
81. Odintsova, O.I., Prokhorova, A.A., Vladimirtseva, E.L. & Petrova, L.S. (2017) Using the method of microemulsion encapsulation for giving textile materials acaricidal properties, Izvestiya vuzov. Texnologiya tekstil`noj promy`shlennosti, 367(1), pp. 332-336 (in Russian).; EDN: https://elibrary.ru/YRGJKX
82. Podgornik, B., Šandrić, S. & Kert, M. Microencapsulation for Functional Textile Coatings with Emphasis on Biodegradability – A Systematic Review, Coatings, 11(11), pp. 1371. DOI:https://doi.org/10.3390/coatings11111371.
83. Debboun, M. & Strickman, D. (2013) Insect repellents and associated personal protection for a reduction in human disease, Medical and Veterinary Entomology, 27(1), pp. 1-9.
84. Sarksyan, D.S., Maleev, V.V. & Platonov, A.E. (2012) Differential diagnosis of ixodes tick-borreliosis caused by Borreliamiyamotoi, Infekcionny`ebolezni, 10(4), pp. 41-44 (in Russian).; EDN: https://elibrary.ru/PUSFDD
85. Odintsova, O.I. & Lipina, A.A. (2022) Perspective preparations for acaricide-repellent finishing of textile materials, From Chemistry Towards Technology Step-By-Step, 3(1), pp. 49-58 [online]. Available at: http://chemintech.ru/index.php/tor/2022tom3no1 (accessed 15.09.2023) (in Russian).; DOI: https://doi.org/10.52957/27821900_2022_01_58; EDN: https://elibrary.ru/BXOYKA
86. Utenkova, E.O. & Savinykh, N.A. (2021) Tick-borne encephalitis in Russia and Europe, Medicinskij al`manax, 67(2), pp. 13-21 (in Russian).; EDN: https://elibrary.ru/SFWHHI
87. Lipina, A.A., Odintsova, O.I., Antonova, A.S. & Noskova, Yu.V. (2019) Evaluation of nanodisperse state and aggregative stability of experimental samples of encapsulated acaricide-repellent substances, Izvestiya vuzov. Texnologiya tekstil`noj promy`shlennosti, 383(5), pp. 130-135 (in Russian).; EDN: https://elibrary.ru/VHWBKW
88. Korolev, S.V., Odintsova, O.I., Lipina, A.A., Chernova, E.N. & Korolev, D.S. (2019) Development of acaricide-repellent coating technology for textile materials and its successful implementation in the production of innovative enterprise "Association "SPECIAL TEXTILE", Izvestiya vuzov. Texnologiya tekstil`noj promy`shlennosti, 384(6), pp. 55-61 (in Russian).; EDN: https://elibrary.ru/IFJGRO
89. Korolev, D.S., Korolev, S.V. & Kozlova, O.V. (2016) Clothing for human protection from blood-sucking ticks and flying blood-sucking insects. 2625432 RU.
90. Kuzmenko, V.A., Rusanova, A.I., Malysheva, K.A. & Odintsova, O.I. (2015) Current status and prospects for the development of aromatic finishing for textile materials, Khimiya rastitel`nogo sy`r`ya, (1), pp. 15-27 (in Russian).; EDN: https://elibrary.ru/UILSNT
91. Mertgenç, C., Enginar, H. & Yılmaz, H. (2021) Microencapsulation of Fragrance with Polyurethane – Urea and Application on Different Fabrics, Iran. J. Sci. Technol. Trans. A Sci., (45), pp. 1–11.
92. Wang, S., Zhang, W., Chen, Y., Zhang, S. & Wang, W. (2019) The Aromatic Properties of Polyurea–Encapsulated Lavender Oil Microcapsule and their Application in Cotton Fabric, J. Nanosci. Nanotechnol., (19), pp. 4147–4153.
93. Kuzmenko, V.A., Rusanova, A.I., Malysheva, K.A. & Odintsova, O.I. (2014) Synthetic polyelectrolytes application for immobilisation of fragrant substances on textile materials by "LAYER-BY-LAYER" method, Izvestiya vuzov. Texnologiya tekstil`noj promy`shlennosti, (57), pp. 100-102 (in Russian).; EDN: https://elibrary.ru/TNVTFH
94. Reichling, J. (2009) Essential oils of aromatic plants with antibacterial, antifungal, antiviral, and cytotoxic properties–an overview, Complementary Medicine Research, 16(2), pp. 79-90.
95. Teli, M.D., Mallick, A. & Patil, G. (2014) Healing touch of textiles: II aroma therapy, Asian Dyer, 11(3), pp. 45.
96. Mondal, S. (2008) Phase change materials for smart textiles – An overview, Applied thermal engineering, 28(11–12), pp. 1536–1550.; DOI: https://doi.org/10.1016/j.applthermaleng.2007.08.009; EDN: https://elibrary.ru/MTMWVN
97. Anson, R. (2005) Microencapsulation: For enhanced textile performance, Performance Apparel Markets, (12), pp. 21–39.
98. Sarier, N. (2007) The manufacture of microencapsulated phase change materials suitable for the design of thermally enhanced, Thermokhimica acta, 452(2), pp. 149–160.; DOI: https://doi.org/10.1016/j.tca.2006.08.002; EDN: https://elibrary.ru/KHKBPB
99. Özonur, Y. (2006) Microencapsulation of coco fatty acid mixture for thermal energy storage with phase change material, International Journal of Energy Research, 30(10), pp. 741–749.
100. Chang, Z. (2022) Review on the preparation and performance of paraffin-based phase change microcapsules for heat, Journal of Energy Storage, (46), pp. 103840.; DOI: https://doi.org/10.1016/j.est.2021.103840; EDN: https://elibrary.ru/FDOYJR
101. Marina, A. (2009) Chemical properties of virgin coconut oil, Journal of the American Oil Chemists' Society, (86), pp. 301–307.
102. Liu, X., Sheng, X., Lee, J.K., Kessler, M.R. (2009) Synthesis and Characterization of Melamine-Urea-Formaldehyde Microcapsules Containing ENB-Based Self-Healing Agents, Macromolecular Materials Engineering, (294), pp. 389–395.
103. Raskutin, A.E., Khrulkov, A.V. & Yazvenko, L.N. (2017) Polymer film coating for PCM structures (review), Nauchno-texnicheskij zhurnal "Trudy` VIAM", 2(50) (in Russian) [online]. Available at: http://www.viam-works.ru (accessed 12.09.2023).
104. Kartseva, Yu.E., Zimnurov, A.R. & Kozlova, O.V. (2020) Domestic compositions for textile pigment printing, Fizika voloknisty`x materialov: struktura, svojstva, naukoemkie texnologii i materialy` (SMARTEX), (1), pp. 291-293 (in Russian).; DOI: https://doi.org/10.47367/2413-6514_2020_1_291; EDN: https://elibrary.ru/NPSRLB
105. Erzunov, K.A. (2023) Preparation of nanoscale zinc-containing polyfunctional coatings on textile materials, Izvestiya vuzov. Khimiya i khimicheskaya texnologiya, (9), pp. 89-95 (in Russian).; DOI: https://doi.org/10.6060/ivkkt.20236609.6825; EDN: https://elibrary.ru/ABPWGD