Yaroslavl, Yaroslavl, Russian Federation
Yaroslavl, Yaroslavl, Russian Federation
from 01.01.2023 until now
Yaroslavl State Technical University
from 01.01.2018 to 01.01.2023
Yaroslavl, Yaroslavl, Russian Federation
Yaroslavl, Yaroslavl, Russian Federation
Yaroslavl, Yaroslavl, Russian Federation
Yaroslavl, Yaroslavl, Russian Federation
UDK 547-327 Амиды. Имиды. Амидины. Гидроксамовые кислоты. Другие замещения азотом в карбоксильной группе
The paper concerns with the study of the (4R*,4aS*,10bR*)-chromeno[4,3-d]pyrimidine-2,5-diones aminolysis. According to the research results, a lactone cycle opening reaction is possible only when treating the chromanes with hydrazine hydrate.
pyrimidinones, hexahydrochromeno[4,3-d]pyrimidinones, hydrazine hydrate, carbohydrazides
1. Le Goff, G. & Ouazzani, J. (2014) Natural hydrazine-containing compounds: Biosynthesis, isolation, biological activities and synthesis, Bioorg. Med. Chem., 22(23), pp. 6529–6544. DOI:https://doi.org/10.1016/j.bmc.2014.10.011 [online]. Available at: https://www.sciencedirect.com/science/article/abs/pii/S096808961400724X (accessed 15.01.2024)
2. Taguchi, A., Nishiguchi, S., Shiozuka, M., Nomoto, T., Ina, M., Nojima, S., Matsuda, R., Nonomura, Y., Kiso, Y., Yamazaki, Y., Yakushiji, F. & Hayashi, Y. (2012) Negamycin analogue with readthrough-promoting activity as a potential drug candidate for Duchenne muscular dystrophy, ACS Med. Chem. Lett., 3(2), pp. 118 122. DOI:https://doi.org/10.1021/ml200245t [online]. Available at: https://pubs.acs.org/doi/abs/10.1021/ml200245t (accessed 15.01.2024)
3. Bordoloi, M., Kotoky, R., Mahanta, J.J., Sarma, T.C. & Kanjilal, P.B. (2009) Anti-genotoxic hydrazide from Crinum defixum, Eur. J. Med. Chem., 44(6), pp. 2754–2757. DOI:https://doi.org/10.1016/j.ejmech.2008.09.041 [online]. Available at: https://www.sciencedirect.com/science/article/abs/pii/S0223523408004601 (accessed 15.01.2024)
4. Liu, J.T., Yu, J.C., Jiang, H.M., Zhang, L.Y., Zhao, X.J. & Fan, S.D. (2008) Crystal structure and properties of the carboxylic acid derivatives of Schizonpeta mulifida, Chin. J. Chem., 26(6), pp. 1129–1132. DOI:https://doi.org/10.1002/cjoc.200890201 [online]. Available at: https://onlinelibrary.wiley.com/doi/abs/10.1002/cjoc.200890201 (accessed 15.01.2024)
5. Masunari, A. & Tavares, L.C. (2007) A new class of nifuroxazide analogues: synthesis of 5-nitrothiophene derivatives with antimicrobial activity against multidrug-resistant Staphylococcus aureus, Bioorg. Med. Chem., 15(12), pp. 4229–4236. DOI:https://doi.org/10.1016/j.bmc.2007.03.068 [online]. Available at: https://www.sciencedirect.com/science/article/abs/pii/-S0968089607002684 (accessed 10.01.2024)
6. Loncle, C., Brunel, J.M., Vidal, N., Dherbomez, M. & Letourneux, Y. (2004) Synthesis and antifungal activity of cholesterol-hydrazone derivatives, Eur. J. Med. Chem., 39(12), pp. 1067–1071. DOI:https://doi.org/10.1016/j.ejmech.2004.07.005 [online]. Available at: https://www.sciencedirect.com/science/article/abs/pii/S0223523404001564 (accessed 10.12.2023)
7. Tapanyiğit, O., Demirkol, O., Güler, E., Erşatır, M., Çam, M.E. & Giray, E.S. (2020) Synthesis and investigation of anti-inflammatory and anticonvulsant activities of novel coumarin-diacylated hydrazide derivatives, Arab. J. Chem., 13(12), pp. 9105–9117. DOI:https://doi.org/10.1016/j.arabjc.2020.10.034 [online]. Available at: https://www.sciencedirect.com/science/article/pii/S1878535220304408 (accessed 19.12.2023)
8. Andrews, B., Komathi, K. & Mohan, S. (2017) Synthesis and comparing the antibacterial activities of pyrimidine derivatives, J. Chem. Sci., 129(3), pp. 335–341. DOI:https://doi.org/10.1007/s12039-017-1228-z [online]. Available at: https://link.springer.com/article/10.1007/s12039-017-1228-z (accessed 19.12.2023)
9. Shcherbakov, K.V., Burgart, Y.V. & Saloutin, V.I. (2009) Transformations of 3-(1-aminoethylidene)-5,6,7,8-tetrafluorobenzopyran-2,4-dione with hydrazines, Heterocycles, 78(2), pp. 347–356. DOI:https://doi.org/10.3987/COM-08-11495.
10. Yatcherla, S.R., Islam, A., Dussa, N. & Bollikolla, H.B. (2015) Synthesis, characterization and antibacterial activity of some new 3-(3-(trifluoromethyl)-phenyl)-3-(2-hydroxy-5-methylphenyl)-propanehydrazones, Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem., 54B(9), pp. 1162–1167 [online]. Available at: https://nopr.niscpr.res.in/handle/-123456789/32270 (accessed 19.12.2023)
11. Dang-I, A.Y., Huang, T., Mehwish, N., Dou, X., Yang, L., Mukwaya, V., Xing, C., Lin, S. & Feng, C.-L. (2020) Antimicrobial Activity with Enhanced Mechanical Properties in Phenylalanine-Based Chiral Coassembled Hydrogels: The Influence of Pyridine Hydrazide Derivatives, ACS Appl. Bio Mater., 3(4), pp. 2295–2304. DOI:https://doi.org/10.1021/acsabm.0c00075 [online]. Available at: https://pubs.acs.org/doi/abs/10.1021/acsabm.0c00075 (accessed 19.01.2024)
12. Ergenc, N., Günay, N.S. & Demirdamar, R. (1998) Synthesis and antidepressant evaluation of new 3-phenyl-5-sulfonamidoindole derivatives, Eur. J. Med. Chem., 33(2), pp. 143–148. DOI:https://doi.org/10.1016/S0223-5234(98)80039-1 [online]. Available at: https://www.sciencedirect.com/science/article/abs/pii/S0223523498800391 (accessed 10.01.2024)
13. Macedo, D., Filho, A.J.M.C., Soares de Sousa, C.N., Quevedo, J., Barichello, T., Junior, H.V.N. & Freitas de Lucena, D. (2017) Antidepressants, antimicrobials or both? Gut microbiota dysbiosis in depression and possible implications of the antimicrobial effects of antidepressant drugs for antidepressant effectiveness, J. Affective Disord., 208, pp. 22–32. DOI:https://doi.org/10.1016/j.jad.2016.09.012 [online]. Available at: https://www.sciencedirect.com/science/article/abs/pii/S0165032716308813 (accessed 19.12.2023)
14. Verma, G., Marella, A., Shaquiquzzaman, M., Akhtar, M., Ali, M.R. & Alam, M.M. (2014) A review exploring biological activities of hydrazones, J. Pharm. Bioall. Sci., 6(2), pp. 69–80. DOI:https://doi.org/10.4103/0975-7406.129170 [online]. Available at: https://pubmed.ncbi.nlm.nih.gov/24741273 (accessed 19.12.2023)
15. Mashkovsky, M.D. (2019) Medicinal products. M.: Novaya Volna (in Russian).
16. Atta, A., Fahmy, S., Rizk, O., Sriram, D., Mahran, M.A. & Labouta, I.M. (2018) Structure-based design of some isonicotinic acid hydrazide analogues as potential antitubercular agents, Bioorg. Chem., 80, pp. 721 732. DOI:https://doi.org/10.1016/j.bioorg.2018.07.028 [online]. Available at: https://www.sciencedirect.com/science/article/abs/pii/-S0045206818305686 (accessed 29.12.2023)
17. Villamizar-Mogotocoro, A.F., Vargas-Méndez, L.Y. & Kouznetsov, V.V. (2020) Pyridine and quinoline molecules as crucial protagonists in the never-stopping discovery of new agents against tuberculosis, Eur. J. Pharm. Sci., 51(5), pp. 1130–1164. DOI:https://doi.org/10.1016/j.ejps.2020.105374 [online]. Available at: https://www.sciencedirect.com/science/article/abs/pii/S0928098720301639 (accessed 19.12.2023)
18. Torosyan, S.A., Nuriakhmetova, Z.F., Gimalova, F.A., Egorov, V.A. & Miftakhov, M.S. (2020) 4H-Thieno[3,2-b]pyrrole-5-carbohydrazides and Their Derivatives, Russ. J. Org. Chem., 56(9), pp. 1545–1549. DOI:https://doi.org/10.1134/S1070428020090079 [online]. Available at: https://link.springer.com/article/10.1134/S1070428020090079 (accessed 10.01.2024)
19. Bijev, A. (2006) New heterocyclic hydrazones in the search for antitubercular agents: Synthesis and in vitro evaluations, Lett. Drug. Des. Discov., 3(7), pp. 506–512. DOI:https://doi.org/10.2174/157018006778194790 [online]. Available at: https://www.ingentaconnect.com/content/ben/lddd/2006/00000003/00000007/art00010 (accessed 10.01.2024)
20. Paprocka, R., Wiese- Szadkowska, M., Helmin-Basa, A., Mazur, L., Kutkowska, J., Michałkiewicz, J., Modzelewska-Banachiewicz, B. & Pazderski, L. (2018) Synthesis and evaluation of new amidrazone-derived hydrazides as a potential anti-inflammatory agents, Monatsh. Chem., 149(8), pp. 1493–1500. DOI:https://doi.org/10.1007/s00706-018-2197-8 [online]. Available at: https://link.springer.com/article/10.1007/s00706-018-2197-8 (accessed 10.01.2024)
21. Todeschini, A.R., de Miranda, A.L.P., da Silva, K.C.M., Parrini, S.C. & Barreiro, E.J. (1998) Synthesis and evaluation of analgesic, anti-inflammatory and antiplatelet properties of new 2-pyridylarylhydrazone derivatives, Eur. J. Med. Chem., 33(3), pp. 189–199. DOI:https://doi.org/10.1016/S0223-5234(98)80008-1 [online]. Available at: https://www.sciencedirect.com/science/article/abs/pii/S0223523498800081 (accessed 20.12.2023)
22. Khodov, I.A., Efimov, S.V., Klochkov, V.V., Alper, G.A. & Batista de Carvalho, L.A.E. (2014) Determination of preferred conformations of ibuprofen in chloroform by 2D NOE spectroscopy, Eur. J. Pharm. Sci., 65, pp. 65–73. DOI:https://doi.org/10.1016/j.ejps.2014.08.005 [online]. Available at: https://www.sciencedirect.com/science/article/abs/pii/S0928098714003145 (accessed 10.01.2024)
23. Checker, R., Sharma, D., Sandur, S.K., Subrahmanyam, G., Krishnan, S., Poduval, T.B. & Sainis, K.B. (2010) Plumbagin inhibits proliferative and inflammatory responses of T cells independent of ROS generation but by modulating intracellular thiols, J. Cell. Biochem., 110(5), pp. 1082–1093. DOI:https://doi.org/10.1002/jcb.22620 [online]. Available at: https://onlinelibrary.wiley.com/doi/full/10.1002/jcb.22620 (accessed 10.12.2023)
24. Hruskova, K., Potuckova, E., Hergeselova, T., Liptakova, L., Haskova, P., Mingas, P., Kovarikova, P., Simunek, T. & Vavrova, K. (2016) Aroylhydrazone iron chelators: Tuning antioxidant and antiproliferative properties by hydrazide modifications, Eur. J. Med. Chem., 120, pp. 97–110. DOI:https://doi.org/10.1016/j.ejmech.2016.05.015 [online]. Available at: https://www.sciencedirect.com/science/article/abs/pii/S0223523416303944 (accessed 10.01.2024)
25. Taguchi, A., Hamada, K., Kotake, M., Shiozuka, M., Nakaminami, H., Pillaiyar, T., Takayama, K., Yakushiji, F., Noguchi, N., Usui, T., Matsuda, R. & Hayashi, Y. (2014) Discovery of natural products possessing selective eukaryotic readthrough activity: 3-epi-deoxynegamycin and its leucine adduct, Chem. Med. Chem., 9(10), pp. 2233–2237. DOI:https://doi.org/10.1002/cmdc.201402208 [online]. Available at: https://chemistry-europe.onlinelibrary.wiley.com/doi/full/10.1002/cmdc.201402208 (accessed 10.01.2024)
26. Roupas, P., Keogh, J., Noakes, M., Margetts, C. & Taylor, P. (2010) Mushrooms and agaritine: A mini-review, J. Funct. Foods, 2(2), pp. 91–98. DOI:https://doi.org/10.1016/j.jff.2010.04.003 [online]. Available at: https://www.sciencedirect.com/science/article/abs/pii/S1756464610000241 (accessed 10.01.2024)
27. Uryadova, A.M., Makarova, E.S. & Filimonov, S.I. (2023) Diastereoselective synthesis of chromeno[4,3-d]pyrim-idines, From Chemistry Towards Technology Step-By-Step, 4(2), pp. 66–71 [online]. Available at: http://chemintech.ru/index.php/tor/2023-4-2 (accessed 08.01.2024)
28. Makarova, E.S., Kabanova, M.V., Danilova, A.S., Filimonov, S.I., Smirnova, E.A. & Shetnev, A.A. (2021) Synthesis and properties of substituted 2-thioxohexahydropyrimidine-5-carbohydrazides, Russ. Chem. Bull., 70(7), pp. 1377–1382. DOI:https://doi.org/10.1007/s11172-021-3226-z [online]. Available at: https://link.springer.com/article/10.1007/s11172-021-3226-z (accessed 10.01.2024)
29. Makarova, E.S., Kabanova, M.V., Filimonov, S.I., Shetnev, A.A. & Suponitsky, K.Yu. (2022) Synthesis of substituted hexahydro-2H-chromeno[4,3-d]pyrimidine-2,5-diones and their modification at the hydroxy group, Russ. Chem. Bull., 71(5), pp. 1034–1042. DOI:https://doi.org/10.1007/s11172-022-3505-3 [online]. Available at: https://link.springer.com/article/10.1007/s11172-022-3505-3/ (accessed 10.01.2024)