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Introduction

Substituted 1,2,4-oxadiazoles are used as biologically active substances. There are several
known methods for the synthesis of 3,5-disubstitued 1,2,4-oxadiazoles based on amidoximes
[1-9]. We have studied the reaction of formation of 1,2,4-oxadiazoles during the interaction of
N-hydroxybenzamidine (N-HBA) with carboxylic acid chlorides [10, 11].

There are data in the literature on quantum-chemical modeling of 3,5-diaryl-substituted
1,2,4-oxadiazoles. Calculations were performed using the PM3, AM1, and HF / 6-31G methods
(gas-phase approximation) [12]. The obtained parameters of the geometry of molecules corre-
spond to the experimental values determined using X-ray diffraction analysis.

Main part

To test the assumptions made about the mechanism of formation of 1,2,4-oxadiazoles, we
carried out a quantum-chemical study of the reaction of the interaction of N-HBA with acetyl
chloride (ACh). Our calculations were performed using the AMSOL software package by the
AM1 / SM2.1 method (AMSOL 7.1 in the liquid-phase approximation: SM5.42, pyridine sol-
vent) [13, 14]. A complete optimization of the geometry of all calculated molecules and com-
plexes has been performed. Transient states were found using a standard technique - minimi-
zation of the norm of the energy gradient with the subsequent solution of the oscillatory prob-
lem for the resulting structure (test for one pseudo-oscillation with a negative force constant).
In most cases, the approximation of the restricted Hartree-Fock (RHF) method was used, but
in some cases, for comparison, calculations were performed using the unrestricted Hartree-
Fock (UHF) methods.

Enthalpy of formation AH; = AH + AG.., where AH’ - is the calculated standard en-
thalpy of formation, AG., is the calculated free energy of solvation. The error in predicting the
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heats of solvation of neutral molecules is on average 1.7 kJ/mol, for ions - 17.6 kJ/mol [13-15].

We have considered the following possible path of the reaction (Fig. 1).
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Fig. 1. A possible path of the reaction

The enthalpies of formation of the initial and final products, as well as intermediate com-
plexes lying on the path of their formation, are shown in Table 1.

Table 1. Enthalpies of formation of compounds and complexes

AHp, kJ/mol
I 57,27
II -151,05
III -87,36
v 16,57
\% -54,82
VI 254,50

ACh in the N-HBA (I) molecule can attack a nitrogen or oxygen atom (Fig. 2).
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Fig. 2. Scheme of the formation of compounds III and VIII

Zwitterion II is a product of the interaction between N-HBA and AX (Fig. 3). The
change in the energy of a supermolecule (N-HBA and AX) during the formation of II is shown
in Table 2.
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Fig. 3. Scheme of the supermolecule (N-HBA and ACh)

Table 2. Change in the energy of a supermolecule from a distance O(3)-C(2)

10(3)-C(2), A AHp, kJ/mol 10(3)-C(2), A AHj, kJ/mol

3 -151,05 2,2 -116,69
2,9 -149,00 2,1 -104,42
2,8 -146,61 2 -89,29
2,7 -146,86 1,9 71,57
2,6 -143,59 1,8 -53,00
2,5 -139,40 1,7 -37,50
2,4 -133,79 1,6 -48,06
2,3 -126,37

It was found that the maximum value of AH; corresponds to the distance O(3)-C(2) =
1,64 A. The parameters of the transient state are shown in Table 3.

Table 3. Transient state parameters

Bondin Bondin
Bonding | Bonding | lous). s &
log)-cey| AHp  |le@-ciw, structure structure

o o qC1(4) q0(3) qO(S) structure structure H(18)» qH(lg)
A kJ/mol A ] 0@3)- C(2)-
C(2)=0(5) |C(2)-0(3 A

(2)=0(5) [C(2)-0(3) H(6) Cl(4)

1,64 | -32,14 | 2,15 |-0,718|-0,274|-0,510 1,87 0,50 0,96 0,89 0,423 0,352

It can be seen from the data obtained that the C(2)-Cl(4) bond was broken, and the order
of the formed C(2)-O(3) bond was 0.5. The charge on the Cl(4) atom increases to —0.718 e, and
the C(2)-Cl(4) distance increases to 2.15 A. The transition state is characterized by a force con-
stant k = -45.82 n/m, the enthalpy of formation of the transition state (relative to the initial
reagents) AAH]T = 128,51 kJ/mol. The O(3) - H(6) remained almost unchanged.

The calculated enthalpies of formation of compounds III and VIII (see Fig. 2) were —
163.95 and -145.81 kJ/mol, which indicates a high stability of intermediate III, which can be
formed during O-acylation of N-HBA. This has been confirmed experimentally. We isolated an
intermediate with the structure of an ester (III), which was confirmed by IR data (presence of
an ester band vc-o = 1723 cm™') and PMR spectroscopy.

Conclusions

The transformation of compound III into product VI proceeds according to the scheme
shown in Fig. 1, through intramolecular nucleophilic substitution during the transfer of a
carbonyl carbon atom followed by a proton and the formation of 5-methyl-3-phenyl-4,5-
dihydro-1,2,4-oxadiazol-5-ol (V), losing water, passes the product is 5-methyl-3-phenyl-1,2,4-
oxadiazole. The transfer of a proton to I'V and the formation of V occurs practically without an
activation barrier (see Fig. 1).
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