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A quantum chemical simulation of the formation of 3-phenyl-5-methyl-1,2,4-
oxadiazole was performed. The energy of intermediate particles and the transi-
tion state is calculated. The directions of acylation of amidoxime are considered. 

Introduction 

Substituted 1,2,4-oxadiazoles are used as biologically active substances. There are several 
known methods for the synthesis of 3,5-disubstitued 1,2,4-oxadiazoles based on amidoximes 
[1-9]. We have studied the reaction of formation of 1,2,4-oxadiazoles during the interaction of 
N-hydroxybenzamidine (N-HBA) with carboxylic acid chlorides [10, 11]. 

There are data in the literature on quantum-chemical modeling of 3,5-diaryl-substituted 
1,2,4-oxadiazoles. Calculations were performed using the PM3, AM1, and HF / 6-31G methods 
(gas-phase approximation) [12]. The obtained parameters of the geometry of molecules corre-
spond to the experimental values determined using X-ray diffraction analysis. 

Main part 

To test the assumptions made about the mechanism of formation of 1,2,4-oxadiazoles, we 
carried out a quantum-chemical study of the reaction of the interaction of N-HBA with acetyl 
chloride (ACh). Our calculations were performed using the AMSOL software package by the 
AM1 / SM2.1 method (AMSOL 7.1 in the liquid-phase approximation: SM5.42, pyridine sol-
vent) [13, 14]. A complete optimization of the geometry of all calculated molecules and com-
plexes has been performed. Transient states were found using a standard technique - minimi-
zation of the norm of the energy gradient with the subsequent solution of the oscillatory prob-
lem for the resulting structure (test for one pseudo-oscillation with a negative force constant). 
In most cases, the approximation of the restricted Hartree-Fock (RHF) method was used, but 
in some cases, for comparison, calculations were performed using the unrestricted Hartree-
Fock (UHF) methods. 

Enthalpy of formation ∆Hf  = ∆Ho
f + ∆Gsol, where ∆Ho

f  - is the calculated standard en-
thalpy of formation, ΔGsol, is the calculated free energy of solvation. The error in predicting the 
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heats of solvation of neutral molecules is on average 1.7 kJ/mol, for ions - 17.6 kJ/mol [13-15]. 
 

We have considered the following possible path of the reaction (Fig. 1). 

 
Fig. 1. A possible path of the reaction 

The enthalpies of formation of the initial and final products, as well as intermediate com-
plexes lying on the path of their formation, are shown in Table 1.  

Table 1. Enthalpies of formation of compounds and complexes 
 ΔHf ,  kJ/mol 
I 57,27 
II -151,05 
III -87,36 
IV 16,57 
V -54,82 
VI 254,50 

ACh in the N-HBA (I) molecule can attack a nitrogen or oxygen atom (Fig. 2). 

 
Fig. 2. Scheme of the formation of compounds III and VIII 

Zwitterion II is a product of the interaction between N-HBA and AX (Fig. 3). The  
change in the energy of a supermolecule (N-HBA and AX) during the formation of II is shown 
in Table 2. 
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Fig. 3. Scheme of the supermolecule (N-HBA and ACh) 

Table 2. Change in the energy of a supermolecule from a distance О(3)–С(2) 
l О(3)–С(2), Å ∆Hf, kJ/mol l О(3)–С(2), Å ∆Hf, kJ/mol 

3 -151,05 2,2 -116,69 
2,9 -149,00 2,1 -104,42 
2,8 -146,61 2 -89,29 
2,7 -146,86 1,9 -71,57 
2,6 -143,59 1,8 -53,00 
2,5 -139,40 1,7 -37,50 
2,4 -133,79 1,6 -48,06 
2,3 -126,37   

It was found that the maximum value of ΔHf  corresponds to the distance O(3)-C(2) = 
1,64 Å. The parameters of the transient state are shown in Table 3.  

Table 3. Transient state parameters 

lО(3)–С(2), 
Å 

∆Hf,  
kJ/mol 

lC(2)-Cl(4), 
Å 

qCl(4) qO(3) qO(5) 
Bonding 
structure 

C(2)=O(5) 

Bonding 
structure 

C(2)–O(3) 

lO(13)-

H(18), 
Å 

Bonding 
structure 

O(3)–
H(6) 

qH(18) 

Bonding 
structure 

C(2)–
Cl(4) 

1,64 -32,14 2,15 -0,718 -0,274 -0,510 1,87 0,50 0,96 0,89 0,423 0,352 

It can be seen from the data obtained that the C(2)–Cl(4) bond was broken, and the order 
of the formed C(2)–O(3) bond was 0.5. The charge on the Cl(4) atom increases to –0.718 e, and 
the C(2)–Cl(4) distance increases to 2.15 Å. The transition state is characterized by a force con-
stant k = -45.82 n/m, the enthalpy of formation of the transition state (relative to the initial 
reagents) ∆∆𝐻𝐻𝑓𝑓≠ = 128,51 kJ/mol. The O(3) – H(6) remained almost unchanged.  

The calculated enthalpies of formation of compounds III and VIII (see Fig. 2) were –
163.95 and –145.81 kJ/mol, which indicates a high stability of intermediate III, which can be 
formed during O-acylation of N-HBA. This has been confirmed experimentally. We isolated an 
intermediate with the structure of an ester (III), which was confirmed by IR data (presence of 
an ester band νС=О = 1723 см-1) and PMR spectroscopy. 

Conclusions 

The transformation of compound III into product VI proceeds according to the scheme 
shown in Fig. 1, through intramolecular nucleophilic substitution during the transfer of a 
carbonyl carbon atom followed by a proton and the formation of 5-methyl-3-phenyl-4,5-
dihydro-1,2,4-oxadiazol-5-ol (V), losing water, passes the product is 5-methyl-3-phenyl-1,2,4-
oxadiazole. The transfer of a proton to IV and the formation of V occurs practically without an 
activation barrier (see Fig. 1). 
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