

Научная статья УДК 547.582.2 DOI: 10.52957/27821900_2022_04_53

СИНТЕЗ ЗАМЕЩЁННЫХ АРИЛОКСИФТАЛОНИТРИЛОВ НА ОСНОВЕ 4-ХЛОРФТАЛОНИТРИЛА И 4,5-ДИХЛОРФТАЛОНИТРИЛА

И. Г. Абрамов¹, В. Л. Баклагин¹, В. В. Бухалин¹, В. Е. Майзлиш², А. Е. Рассолова²

Игорь Геннадьевич Абрамов, д-р хим. наук, профессор; **Вячеслав Леонидович Баклагин**, ассистент, аспирант; **Владимир Владимирович Бухалин**, студент, **Владимир Ефимович Майзлиш**, д-р хим. наук, профессор; **Анастасия Евгеньевна Рассолова**, аспирант.

 1 Ярославский государственный технический университет, Ярославль, Россия, abramovig@ystu.ru, baklaginvl@ystu.ru

²Ивановский государственный химико-технологический университет, Ивановский государственный химико-технологический университет, Иваново, Россия, maizlish@isuct.ru, nastyna_25.05@mail.ru

Ключевые слова:

4-хлорфталонитрил, 4,5-дихлорфталонитрил, активированное ароматическое нуклеофильное замещение, замещённые арилоксифталонитрилы, арилендиоксидифталонитрилы, дибензо[1,4]диоксин

Аннотация: На основе реакции активированного ароматического нуклеофильного замещения, протекавшей между 4-хлорфталонитрилом, 4,5-дихлорфталонитрилом и моно- и бисфенолами, содержащими различные заместители, получены известные и не описанные в литературе моно- и бис(арилокси)фталонитрилы, а также 6-членные гетероциклические системы дибензо[1,4]диоксина

Для цитирования:

Абрамов И.Г, Баклагин В.П., Бухалин В.В., Майзлиш В.Е., Рассолова А.Е. Синтез замещённых арилоксифталонитрилов на основе 4-хлорфталонитрила и 4,5-дихлорфталонитрила // *От химии к технологии шаг за шагом.* 2022. Т. 3, вып. 4. С. 53-60. URL: http://chemintech.ru/index.php/tor/2022-3-4

Замещение атома галогена или нитрогруппы в активированных ароматических системах до сих пор является удобным способом получения широкой гаммы полифункциональных соединений, перспективных для использования в различных областях науки и техники [1-6]. Алкил-, арил-, аралокси-, гетерил- и другие замещённые моно- и дифталонитрилы, синтезированные с помощью указанных S_NAr-реакций, занимают достойное место в этом ряду. В профильной научной литературе представлено много способов получения различных по своей природе *орто*-дикарбонитрилов на основе 4-нитрофталонитрила [3, 7-9], 4-бром-5-нитрофталонитрила [9-13], тетра- и дихлорфталонитрила [14, 15], а также вариантов их практического применения и различных отраслях. Это и разработка новых биологически и фармакологически активных препаратов [16-19], эффективных красителей фталоцианинового ряда [20-22], полиэфиримидов [3, 23-25].

Потенциал этой реакции, использованный для получения новых и некоторых уже известных соединений, обсуждается в данной статье (рис. 1).

[©] И. Г. Абрамов, В. Л. Баклагин, В. В. Бухалин, В. Е. Майзлиш, А. Е. Рассолова, 2022

Рис. 1.

В качестве исходных ключевых субстратов были использованы 4-хлорфталонитрил (4- $\mathrm{X}\Phi\mathrm{H}$) 1 и 4,5-дихлорфталонитрил (4,5- $\mathrm{Д}\mathrm{X}\Phi\mathrm{H}$) 2 – ароматические системы, содержащие в бензольном кольце две электроноакцепторные цианогруппы, активирующих один или два атома хлора к протеканию $\mathrm{S}_{N}\mathrm{Ar}$ -реакций под действием моно- и бифункциональных O -нуклеофилов.

В полном соответствии с известным механизмом [1] наличие электроноакцепторных заместителей (в особенности цианогрупп) в указанных субстратах 1, 2 значительно снижает электронную плотность в бензольном кольце, что позволяет протонодонорным нуклеофилам, образовавшимся в реакционной массе, успешно атаковать атомы углерода, связанные с атомами хлора (нуклеофугами), что, в свою очередь, приводит к образованию относительно устойчивых интермедиатов. Логическим завершением этого процесса

является формирование новой и термодинамически выгодной структуры арилоксифталонитрила (4, 5), 4,5-бис(арилокси)фталонитрила (6, 7), арилендиоксидифталонитрила (9, 10).

При работе с хлорфталонитрилами **1**, **2** нами были реализованы два подхода к проведению указанных S_N Ar-реакций – гетерофазный и гомофазный. Классический гетерофазный способ хорош при использовании слабоактивированных субстратов, что и подтвердилось на практике. При взаимодействии 4-ХФН **1** с фенолами **3** (**a-e**) и бисфенолами **8** (**f-h**) лучшие результаты были достигнуты при интенсивном перемешивании и нагревании реакционной смеси в безводном ДМФА в присутствии мелкодисперсного прокаленного карбоната калия. Гетерофазный метод необходимо использовать и для получения симметричных и несимметричных продуктов дизамещенния **6** (**a-e**) и 7 в 4,5-ДХФН. Это объясняется тем, что синтезированные 4-арилокси-5-хлорфталонитрилы **5** (**a-e**) содержат атом хлора, который ещё способен участвовать в S_N Ar-реакции, хотя и при более высокой температуре. Использование фенолов с большим количеством электронодонорных заместителей в бензольном кольце или тиофенолов будет также благоприятствовать протеканию данных реакций.

Для получения продуктов монозамещения **5 (а-е)** на основе 4,5-ДХФН **2** целесообразно использовать гомофазный метод и проводить реакцию в бинарном растворителе ДМФА- H_2O . В этом случае в качестве депротонирующего агента, в присутствии которого *in situ* генерировался реакционноспособный O-нуклеофильный комплекс, также использовался K_2CO_3 как наиболее доступный и обеспечивающий сравнительно высокую скорость процесса. Использование гомофазного метода позволяет получить 4-арилокси-S-хлорфталонитрилы **5 (а-е)** с хорошим выходом без примесей продуктов дизамещения. Это происходит потому, что образовавшиеся в ходе реакции целевые продукты были мало растворимы в водном ДМФА и выпадали из реакционной смеси, что не требовало проведения его дополнительной очистки.

Если в качестве исходных бисфенолов в рассматриваемом взаимодействии с 4,5-ДХФН 2 использовались пирокатехины 11 (i, j), содержавшие две гидроксильные группы в *орто*-положении, то в результате последовательно протекавших реакций межмолекулярного и затем внутримолекулярного замещения атомов галогена бифункциональным *О*-нуклеофилом происходило образование гетероциклической системы дибензодиоксина, содержащей две цианогруппы 12 (i, j).

Таким образом, используя 4-ХФН, 4,5-ДХФН и различные моно- и бифункциональные О-нуклеофилы становится возможным осуществить альтернативный 4-нитрофталонитрилу и 4-бром-5-нитрофталорнитирилу синтез широкого круга уже известных *орто*-дикарбонитрилов, содержащих разнообразные по своей природе заместители, а также синтезировать 4-арилокси-5-хлорфталонитрилы, не описанные в литературе.

Экспериментальная часть

ИК-спектры записывали на ИК-Фурье спектрометре «Perkin Elmer RX-1» с длиной волны 700-4000 см $^{-1}$ (суспензия в вазелиновом масле).

Спектры ¹H NMR регистрировали на приборе «Bruker DRX-500» для 5%-ных растворов образцов в ДМСО- d^6 при 30 °C. В качестве эталона для отсчета химических сдвигов использовали сигналы остаточных протонов растворителя в протонных спектрах ($\delta\delta_{\rm H}$ 2.50 м.д.) или сигнал ДМСО- d^6 в углеродных спектрах ($\delta\delta_{\rm C}$ 39.5 м.д.).

Элементные анализы выполнены на C, H, N-анализаторе «Hewlett-Packard HP-85B».

4-ХФН 1 4,5-ДХФН 2 получали из коммерчески доступных 4-хлорфталевой и 4,5-дихлорфталевой кислот по методике аналогичной, представленной в работе [13].

Фенолы, бисфенолы, а также другие реагенты и растворители коммерчески доступные.

4-(Арилокси)фталонитрилы 4 (а-е) (общая методика). В колбу, снабжённую мешалкой, обратным холодильником и термометром загружали 1.73 г (0.01 моль) 4-ХФН **1**, (0.01 фенола **3 (а-е)**, 1.56 г (0.01 моль) K_2CO_3 и 30 см³ ДМФА. Ход реакции контролировали методом ТСХ. Реакционную массу интенсивно перемешивали при 90–95 °C в течение 2,5-3,0 ч. Ход реакции контролировали методом ТСХ. По окончании реакции реакционную массу охлаждали до 5–10 °C и выливали в 100 см³ холодной воды. Образовавшийся осадок отфильтровывали, промывали водой (3×50 см³) и сушили при 70 °C. Целевые продукты **4 (а-е)** получали с выходом 74–93 % от теории.

4-Арилокси-5-хлорфталонитрилы 5 (а-е) (общая методика). В колбу, снабжённую мешалкой, обратным холодильником и термометром, загружали 0.01 моль 4,5-ДХФН **2**, 0.01 моль фенола **3 (а-е)** и 30 см³ ДМФА. После растворения реагентов при интенсивном перемешивании к реакционной смеси прибавляли раствор 1.56 г (0.01 моль) К₂СО₃ в 10 см³ воды. Реакционную массу интенсивно перемешивали при 90−95 °C в течение 1-2 ч. Ход реакции контролировали методом ТСХ. По окончании реакции реакционную массу охлаждали до 5-10 °C и выливали в 100 см³ холодной воды. Выпавший осадок отфильтровывали, промывали 2-пропанолом (50 см³), водой (3×50 см³) и сушили при 70 °C. Целевые продукты монозамещения **5 (а-е)** получали с выходом 53−62 % от теории.

4,5-бис(арилокси)фталонитрилы 6 (а-е), **7.** (общая методика). В колбу, снабжённую мешалкой, обратным холодильником и термометром, загружали 0.01 моль 4-арилокси-5-хлорфталонитрила **5 (а-е)**, 0.01 моль фенола **3 (а-е)**, 1.56 г (0.01 моль) К₂СО₃ и 30 см³ ДМФА. Реакционную массу интенсивно перемешивали при 90-95 °C в течение 3-5 ч. Ход реакции контролировали методом ТСХ. По окончании реакции реакционную массу охлаждали до 5-10 °C и выливали в 100 см³ холодной воды. Образовавшийся осадок продукта дизамещения отфильтровывали, промывали водой (3×50 см³) и сушили при 70 °C. Целевые соединения **6(а-е)**, **7** получали с выходом (43-78) % от теории.

4,4'-(м-Арилендиокси)дифталонитрилы 9 (f-h), 10 (f-h), дибензо[1,4]диоксин-2,3-дикарбонитрилы **12 (i, j)** (общая методика). В колбу, снабжённую мешалкой, обратным холодильником и термометром, загружали 0.02 моль 4-ХФН **1 (4,5-ДХФН 2)**, 0.01 моль бисфенола **8 (f-h)** или **11 (i, j)**, 3.12 г (0.02 моль) K_2CO_3 и 30 см³ ДМФА. Реакционную массу интенсивно перемешивали при 90–98 °C в течение 3–5 ч. Ход реакции контролировали методом ТСХ. По окончании реакции реакционную массу охлаждали до 5–10 °C и выливали в 100 см³ холодной воды. Выпавший осадок отфильтровывали, промывали

2-пропанолом (50 см³), водой (3×50 см³) и сушили при 70 °C. Целевые продукты **9 (f-h), 10 (f-h)** и **12 (i, j)** получали с выходом 46–74 % от теории.

4а: Выход 76%, $T_{пл} = 128-130$ °C. ИК (υ_{max}): 2230 (CN), 1270 (C-O-C). Найдено, %: C, 70.52; H, 2.92; N, 11.93. $C_{14}H_7FN_2O$. Рассчитано, %: C, 70.59; H, 2.96; N, 11.76. ЯМР ¹H (400 МГц, ДМСО- d_6 , δ , м.д.): 7,43-7,61 (м, 5H, J=14.13 Гц), 7,7 (c, 1H), 8,14 (д, 1H, J=2.13 Гц).

4b: Выход 89%, $T_{пл} = 156-157$ °C. ИК (υ_{max}): 2237 (CN), 1273 (C-O-C). Найдено, %: C, 77.80; H, 5.32; N, 10.70. $C_{17}H_{14}N_2O$. Рассчитано, %: C, 77,84; H, 5.38; N, 10.68. ЯМР ¹Н (400 МГц, ДМСО-d6, δ , м.д.): 1,24 (д, 3H, J=6.84 Гц), 2,91 (кв, 1H, J=6.72 Гц), 7,20-7,36 (м, 4H, J=13.01 Гц), 7,36 (д, 1H, J=8.30 Гц), 7,89 (с, 1H), 8,1 (д, 1H, J=2.10 Гц).

4с: Выход 93%, $T_{пл} = 162-165$ °C. ИК (υ_{max}): 2230 (CN), 1259 (C-O-C). Найдено, %: C, 78.20; H, 5.81; N, 10,17. $C_{18}H_{16}N_2O$. Рассчитано, %: C 78.24; H 5.84; N 10.14. ЯМР ¹H (400 МГц, ДМСО-d6, δ , м.д.): 1,13 (д, 6H, J=7.04 Гц), 2,23 (c, 3H), 2,91 (кв, 1H), 6,99 (c, 1H) 7,12 (д, 1H, J=8.06 Гц), 7,34 (д, 1H, J=8.06 Гц), 7,49 (д, 1H, J=6.13 Гц), 7,89 (c, 1H), 8,1 (д, 1H).

4d: Выход 74%, $T_{пл} = 85-87$ °C. ИК (υ_{max}): 3262 (NH), 2237 (CN), 1668 (C=O), 1256 (C-O-C). Найдено, %: C, 69.22; H, 3.98; N, 15,23. $C_{16}H_{11}N_3O_2$. Рассчитано, %: C, 69.31; H, 4.00; N, 15.15. ЯМР ¹H (400 МГц, ДМСО-d6, δ , м.д.): 2,04 (c, 3H), 6,84 (д, 2H, J=9.01 Гц), 7,34 (т, 1H), 7,44 (д, 1H, J=9.12 Гц), 7,76 (c, 1H), 7,88 (c, 1H), 7,99 (д, 1H, J=7.02 Гц), 10.12 (c, 1H).

4e: Выход 88%, $T_{\rm пл}=230-232$ °C. ИК ($\upsilon_{\rm max}$): 3264 (NH), 2234 (CN), 1664 (C=O), 1240 (C-O-C) Найдено, %: C, 68.76; H, 3.20; N, 17.77. $C_{18}H_{10}N_4O_2$. Рассчитано, %: C, 68.79; H, 3.21; N, 17.83. ЯМР ¹H (400 МГц, ДМСО-d6, δ , м.д.): 2,07 (c, 3H), 7,11 (м, 2H, J=9.04 Гц), 7,57 (c, 1H), 7,72 (м, 2H, J=9.14 Гц), 7,9 (c, 1H), 8,3 (д, 1H), 10,09 (c, 1H).

5а: Выход 59%, $T_{\text{пл}} = 141-144$ °C. ИК (υ_{max}): 2232 (CN), 1276 (C-O-C), 1179 (C-F), 1010 (C-Cl). Найдено, %: C, 61.49; H, 2.25; N, 10.25. $C_{14}H_6\text{ClFN}_2\text{O}$. Рассчитано, % C, 61.67; H, 2.22; N, 10.27. ЯМР ^1H (400 МГц, ДМСО-d6, δ , м.д.): 7,27 (дд, 2H, J=9.28, 4.64 Гц), 7,34 (дд, 2H, 9.04, 8.55 Гц), 7,67 (с, 1H), 8,55 (с. 1H).

5b: Выход 58%, $T_{\text{пл}} = 160-161$ °C. ИК (υ_{max}): 2235 (CN), 1273 (C-O-C), 1014 (C-Cl). Найдено, %: C, 68.77; H, 4.40; N, 9,53. $C_{17}H_{13}\text{ClN}_2\text{O}$. Рассчитано, % C, 68.81; H, 4.42; N, 9.44. ЯМР ¹H (400 МГц, ДМСО-d6, δ , м.д.): 1,22 (д, 6H, J=6.84 Гц), 2,94 (кв, 1H, J=6.78 Гц), 7,10 (д, 2H, J=8.06 Гц), 7,36 (д, 2H, J=8.30 Гц), 7,06 (с, 1H), 8,56 (с, 1H).

5с: Выход 53%, $T_{\text{пл}}=124$ –125 °C. ИК (υ_{max}): 2235 (CN), 1276 (C-O-C), 1017 (C-Cl). Найдено, %: C, 69.53; H, 4.82; N, 9.09. $C_{18}H_{15}ClN_2O$. Рассчитано, %: C, 69.57; H, 4.86; N, 9.01. ЯМР ¹H (400 МГц, ДМСО-d6, δ , м.д.): 1,14 (д, 6H, J=7.08 Гц), 2,27 (с, 3H), 2,93 (кв, 1H), 7,12 (д, 1H, J=8.06 Гц), 7,34 (д, 1H, J=8.06 Гц), 7,45 (с, 1H), 8,55 (с, 1H).

5d: Выход 57%, $T_{пл}=191-193$ °C. ИК (υ_{max}): 3260 (NH), 2237 (CN), 1243 (C-O-C), 1020 (C-Cl). Найдено, %: C, 61.64; H, 3.22; N, 13,49. $C_{16}H_{10}ClN_3O_2$. Рассчитано, C, 61.65; H, 3.23; N, 13.48. ЯМР ¹H (400 МГц, ДМСО-d6, δ , м.д.): 2,02 (c, 3H), 6,89 (д, 2H, J=9.01 Гц), 7,37 (т, 1H), 7,44 (д, 1H, J=9.12 Гц), 7,66 (c, 1H), 7,88 (c, 1H), 10.12 (c, 1H).

5е: Выход 62%, $T_{пл}=223-225$ °C. ИК (υ_{max}): 3267 (NH), 2236 (CN), 1667 (C=O), 1240 (C-O-C), 1019 (C-Cl). Найдено, %: C, 61.59; H, 3.18; N, 13,49. $C_{16}H_{10}ClN_3O_2$. Рассчитано, %: C, 61.65; H, 3.23; N, 13.48. ЯМР ¹H (400 МГц, ДМСО-d6, δ , м.д.): 2,05 (c, 3H), 7,14 (м, 2H, J=9.04 Гц), 7,57 (c, 1H), 7,69 (м, 2H, J=9.04 Гц), 8,55 (c, 1H), 10,09 (c, 1H).

6а: Выход 49%, $T_{\text{пл}} = 184-187$ °C. ИК (υ_{max}): 2232 (CN), 1220 (C-O-C), 1179 (C-F). Найдено, %: C, 68.99; H, 2.85; N 8.05. $C_{20}H_{10}F_2N_2O_2$. Рассчитано, % C, 68.97; H, 2.89; N, 8.04. ЯМР ¹Н (400 МГц, ДМСО-d6, δ , м.д.): 7,27-7,43 (м, 8H, J=16.28 Гц), 7,47 (c, 2H).

6b: Выход 48%, $T_{\text{пл}} = 218-220$ °C. ИК (υ_{max}): 2234 (CN), 1243 (C-O-C). Найдено, %: C, 78.72; H, 6.06; N, 7,03. $C_{26}H_{24}N_2O_2$. Рассчитано, % C, 78.76; H, 6.10; N, 7.07. ЯМР ¹Н (400 МГц, ДМСО-d6, δ , м.д.): 1,22 (д, 12H, J=6.82 Гц), 2,9 (кв, 2H, J=6.71 Гц), 7,14-7,31 (м, 4H, J=8.06 Гц), 7,36 (д, 4H, J=8.30 Гц), 7,44 (c, 2H).

6с: Выход 43%, $T_{пл}=232-235$ °C. ИК (υ_{max}): 2235 (CN), 1239 (C-O-C). Найдено, %: C, 79.13; H, 6.62; N, 6,64. $C_{28}H_{28}N_2O_2$. Рассчитано, %: C, 79.22; H, 6.65; N, 6.60. ЯМР ¹Н (400 МГц, ДМСО-d6, δ , м.д.): 1,14 (д, 12H, J=7.01 Гц), 2,23 (c, 6H), 2,97 (кв, 2H), 7,12-7,34 (м, 4H, J=13.1 Гц, 7,44 (д, 2H, J=3.4 Гц), 7,55 (c, 2H).

6d: Выход 67 %, 224-227 °C. ИК (υ_{max}): 3260 (NH), 2237 (CN), 1664 (C=O), 1246 (C-O-C). Найдено, %: C, 67.54; H, 4.22; N, 13,19. $C_{24}H_{18}N_4O_4$. Рассчитано, %: C, 67.60; H, 4.25; N, 13.14. ЯМР ¹H (400 МГц, ДМСО-d6, δ , м.д.): 2,07 (c, 6H), 7,12-7,29 (м, 6H, J=10.1 Гц), 7,41 (c, 2H), 7,68 (c, 2H), 10,01 (c, 2H).

6e: Выход 78%, $T_{пл}=243-245$ °C. ИК (υ_{max}): 3265 (NH), 2233 (CN), 1667 (C=O), 1240 (C-O-C). Найдено, %: C, 67.55 9; H, 4.23; N, 13.17. $C_{24}H_{18}N_4O_4$. Рассчитано, %: C, 67.60; H, 4.25; N, 13.14. ЯМР ¹H (400 МГц, ДМСО-d6, δ , м.д.): 2,03 (c, 6H), 7,14-7,19 (м, 4H, J=9.04 Гц), 7,41 (д, 4H, J=3.1 Гц), 7,71 (c, 2H), 10,01 (c, 2H).

9f: Выход 68%, $T_{пл}=185-187$ °C. ИК (υ_{max}): 2235 (CN), 1275 (C-O-C). Найдено, %: C, 72.86; H. 2.77; N, 15.47. $C_{22}H_{10}N_4O_2$. Рассчитано, %: C, 72.92; H, 2.78; N, 15.46. ЯМР ¹Н (400 МГц, ДМСО-d6, δ , м.д.): 6,80 (c, 1H), 7,15 (д, 2H, J=2,69 Гц), 7,29-7,43 (м, 3H, J=10.18 Гц), 7,95-8,30 (м, 4H, J=16,3 Гц.).

9g: Выход 74%, $T_{пл}=191-192$ °C. ИК (υ_{max}): 2234 (CN), 1274 (C-O-C). Найдено, %: C 73.35; H, 3.15; N, 14,85. C₂₃H₁₂N₄O₂. Рассчитано, %: C, 73.40; H, 3.21; N, 14.89. ЯМР ¹Н (400 МГц, ДМСО-d6, δ , м.д.): 2,3 (c, 3H), 6,7 (c, 1H), 7,0 (c, 2H), 7,31-7,59 (м, 2H, J=10.2 Гц), 7,95-8,24 (м, 4H, J=14,3 Гц.).

9h: Выход 67%, $T_{пл} = 208-211$ °C. ИК (υ_{max}): 2233 (CN), 1244 (C-O-C), 1060 (C-Cl). Найдено, %: C, 66.54; H, 2.28; N, 14,16. $C_{22}H_9ClN_4O_2$. Рассчитано, %: C, 66.59; H, 2.29; N, 14.12. ЯМР ¹H (400 МГц, ДМСО-d6, δ , м.д.): 7,56 (дд, 1H, J=8.67, 2.56 Гц), 7,62 (дд, 1H, J=8.79, 2.69 Гц), 7,79 (д, 1H, J=8.79 Гц), 7,95 (дд, 2H, J=5.86, 2.69 Гц), 8,10-8.16 (м, 2H).

10f: Выход 58%, $T_{\text{пл}} = 189-191$ °C. ИК (υ_{max}): 2235 (CN), 1275 (C-O-C), 1015 (C-Cl). Найдено, %: C, 61.26; H, 1.86; N, 12,97. $C_{22}H_8Cl_2N_4O_2$. Рассчитано, %: C, 61.27; H, 1.87; N, 12.99. ЯМР ¹H (400 МГц, ДМСО-d6, δ , м.д.): 7,10 (c, 1H), 7,15 (дд, 2H, J=8.30, 2.20 Гц), 7,61 (т, 1H, J=8.18 Гц), 7,95 (c, 2H), 8,55-8.58 (м, 2H).

10g: Выход 54%, $T_{пл}$ = 194–196 °C. ИК (υ_{max} , oil): 2234 (CN), 1274 (C-O-C), 1012 (C-Cl). Найдено, %: C, 61.95; H, 2.25; N 12,63. $C_{23}H_{10}Cl_2N_4O_2$. Рассчитано, %: C, 62.04; H, 2.26; N, 12.58. ЯМР ¹H (400 МГц, ДМСО-d6, δ , м.д.): 2,3 (c, 3H), 7,13 (c, 1H), 7,2 (c, 1H), 7,61 (c, 1H), 7,9 (c, 1H), 8,4 (c, 1H), 8,59-8,64 (м, 2H).

10h: Выход 57%, $T_{\text{пл}} = 201-204$ °C. ИК (υ_{max}): 2235 (CN), 1263 (C-O-C), 1012 (C-Cl). Найдено, %: C, 56.72; H, 1.50; N, 12,06. $C_{22}H_7Cl_3N_4O_2$. Рассчитано, %: C, 56.74; H, 1.52; N,

12.03. ЯМР 1 Н (400 МГц, ДМСО-d6, δ , м.д.): 7,29 (дд, 1H, J=8.91, 2.81 Гц), 7,45 (д, 1H, J=2.69 Гц), 7,84 (д, 1H, J=8.79 Гц), 7,94 (с, 1H), 8,01 (с, 1H), 8,57 (д, 2H, J=8.79 Гц).

12i: Выход 54%, $T_{\text{пл}} = >300$ °C. ИК (υ_{max}): 2230 (CN), 1250 (C-O-C). Найдено, %: C, 71.72; H, 2.60; N, 11,98. $C_{14}H_6N_2O_2$. Рассчитано, %: C 71.79; H, 2.58; N 11.96. ЯМР ¹H (400 МГц, ДМСО-d6, δ , м.д.): δ , 85-7.00 (m, 4H, J=25 Гц), 7.70 (s, 2H).

12ј: Выход 46%, $T_{пл} = 237-239$ °C. ИК (υ_{max}): 2238 (CN), 1250 (C-O-C) Найдено, %: C, 72.55; H, 3.22; N 11,26. $C_{15}H_8N_2O_2$. Рассчитано, %: C, 72.58; H, 3.25; N, 11.28. ЯМР ¹Н (400 МГц, ДМСО-d6, δ , м.д.): 2.23 (c, 3H), 6.85 (м, 2H, J=3.02 Гц), 6.94 (c, 1 H), 7.8 (c, 2 H).

Список источников

- Smyslov R.Y., Tomilin F.N., Shchugoreva I.A., Nosova G.I., Zhukova, E.V., Litvinova L.S., Yakiman-sky AV., Kolesnikov I., Abramov I.G., Ovchinnikov S.G., Avramov P.V. Synthesis and photophysical properties of copolyfluorenes for light-emitting applications: Spectroscopic experimental study and theoretical DFT consideration // Polymer. 2019. Vol. 168. P. 185-198. DOI: 10.1016/j.polymer.2019.02.015.
- 2. Skvortsov I.Y., Kulichikhin V.G., Ponomarev I.I., Varfolomeeva L.A., Kuzin M. S., Razorenov D.Y., Skupov K.M. Some Specifics of Defect-Free Poly-(o-aminophenylene)naphthoylenimide Fibers Preparation by Wei Spinning // Materials. 2022. Vol. 15(3). P. 808. DOI: 10.3B90/mal5030808.
- 3. Kolesnikov T.I., Orlova A.M., Tsegelskaya A.Y., Cherkaev G.V., Buzin A.I., Kechekyan A.S., Dmitryakov P.V., Belousov S.I., Abramov I.G., Serushkina O.V., Kuznetsov A.A. Dual-curing propargyl-phthalonitrile imide-based thermoset: Synthesis, characterization and curing behavior // European Polymer Journal. 2021. 161 (5). 110865. DOI: 10.1016/j.eurpolymj.2021.110865. URL: https://doi.org/10.1016/j.eurpolymj.2021.110865
- 4. Caterino M., D'Aria F., Kustov A.V., Belykh D.V., Khudyaeva I.S., Starseva O.M., Berezin D.B., Pylina Y.I., Usacheva T. R., Amato J., Giancola C. Selective binding of a bioactive porphyrin-based photosensitizer to the G-quadruplex from the. Intern // J. Biol. Macromolecules. 2020. Vol. 145. P. 244–251. DOI: 10.1016/j.ijbiomac.2019.12.152.
- 5. **Makarova E.S., Kabanova M.V., Filimonov S.I., Shetnev A.A., Suponitsky K.Yu.** Synthesis of substituted hexahydro-2H-chromeno[4,3-d]pyrimidine-2,5-diones and their modification at the hydroxyl group // *Russian Chemical Bulletin.* Vol. 71, no. 5. P. 1034–1042. DOI: 10.1007/s11094-022-02596-0.
- 6. Terrier F. Nucleophilic aromatic displacement: the influence of the nitro group. New York: VSH Publishers, 1991.
- 7. **Tsegelskaya A.Y., Soldatova A.E., Semenova G.I., Dutov M.D., Abramov I.G., Kuznetsov A.A.** One-Stage High Temperature Catalytic Synthesis of Star-Shaped Oligoimides by (B4+AB) Scheme // *Polymer Science. Series B.* 2019. Vol. 61, no. 2. P. 148–154. DOI: 10.1134/S1560090419010123.
- 8. Erzunov D.A, Tikhomirova T.V, Botnar A.A, Znoyko S.A, Abramov I.G, Mayzlish V.E., Martin Y.S. Bulky-substituted phthalodinitriles and cobalt and copper phthalocyanines based on them: synthesis, thermal analysis and spectroscopic properties // *Journal of Thermal Analysis and Calorimetry*. 2020. Vol. 142(5). P. 1807–1816. DOI: 10.1007/s10973-020-10025-1.
- 9. **Абрамов И.Г., Баклагин В.Л., Макарова Е.С., Клейкова Д.Э.** Использование азотсодержащих гетерощиклических О-, и S-нуклеофилов в реакциях с 4-нитрофталонитрилом и 4-бром-5-нитрофталонитрилом // *От химии к технологии шаг за шагом.* 2021. Т. 2, вып. 4. С. 43-50. DOI: 10.52957/2782I900_2021_04_43. URL: http://chemintech.ru/index.php/tor/2021tom2no4
- Chirkova Z.V., Filimonov S.I., Abramov I.G. Synthesis of Functional Derivatives of Benzofuran-5,6-dicar-boxylic Acids // Russian Journal of General Chemistry. 2019. Vol. 89, no. 6. P. 1307–1309. DOI: 10.1134/S1070363219060276/.
- 11. **Filimonov S.I., Chirkova Zh.V., Abramov I.G., Firgang S.I., Stashina G.A., Suponitsky K.Yu.** Synthesis of Novel Substituted 4-Hydroxy-3-oxo-3,4-dihydro-2H-1,4-benzoxazine-6,7-dicarbonitriles // Heterocycles. 2011. Vol. 83, no. 4. P. 755–763. DOI: 10.3987/COM-10-12128.

- 12. Chirkova Zh. V., Filimonov S.I., Abramov I.G. Synthesis of Substituted [1,2,4]oxadiazino[2,3-a]indole-7,8-dicarbonitriles // Mendeleev Commun. 2018. Vol. 28, no. 1. P. 86–87. DOI: 10.1016/j.mencom.2017.09.023/.
- 13. **Abramov I.G., Dorogov M.V., Smirnov A.V., Ivanovskii S.A., Abramova M.B., Plachtinsky V.V..** The differing reactivity of the bromo and nitro groups in 4-bromo-5-nitrophthalonitrile towards nucleophilic attack. // *Mendeleev Commun.* 2000. Vol. 2. P. 78–80. DOI: 10.1070/MC2000v010n02ABEH001147.
- 14. **Negrimovsky V.M., Volkov K.A., Suponitsky K.Yu., Lukyancts E.K.** C-Nucleophilic substitution in tetrachlorophthalonitrile An approach to some new hexadecasubstituted phthalocyanines // *Journal of Porphyrins and Phthalocyanines*. 2013. Vol. 17, no. 8-9. P. 799–806 DOI: 10.U42/S1088424613500429.
- 15. **Kimura M., Nomoto H., Masaki N., Mori S.** Dye Molecules for Simple Co-Sensitization Process: Fabrication of Mixed-Dye-Sensitized Solar Cells // *Angewandte Chemie International Edition*. 2012. Vol. 51, no. 18. P. 4371–4374. DOI: 10.1002/anie.201108610.
- 16. Kustov A.V., Smirnova N.L., Privalov O.A., Moryganova T.M., Strelnikov A.I., Morshnev P.K., Koifman O.I., Lyubimtsev A.V. Kustova T.V., Berezin D.B. Transurethral resection of non-muscle invasive bladder tumors combined with fluorescence diagnosis and photodynamic therapy with chlorin e6-type photosensitizers // Journal of Clinical Medicine. 2022. Vol. 11, no. 1. P. 233. DOI: 10.3390/jcmll010233.
- 17. **Berezin D.B., MabrovV.V., Znoyko S.A., Mayzlish V.E., Kustov A.V.** Aggregation of water soluble octaanionic phthalocyanines and their photoinactivation antimicrobial effect in vitro // *Mendeleev Communications*. 2020. Vol. 30, no. 5. P. 621–623. DOI: 10.1016/j.mencom.2020.09.023.
- 18. Chirkova Z.V., Kabanova M.V., Filimonov S.I., Abramov I.G., Petzer A., Hitge R., Petzer J.P., Suponitsky K.Y. Optimization of pyrrolo[3,4-f]indole-5,7-dione and indole-5,6-dicarbonitrile derivatives as inhibitors of monoamine oxidase // Drug Development Research. 2019. Vol. 80, no. 7. P. 970–980. DOI: 10.1002/ddr.21576.
- 19. Chirkova Zh.V., Kabanova M.V., Filimonov S.I., Abramov I.G., Petzer A., Petzer J.P., Suponitsky K.Yu. An evaluation of synthetic indole derivatives as inhibitors of monoamine oxidase // *Bioorganic and Medicinal Chemistry Letters*. 2016. Vol. 26, no. 9. P. 2214–2219. DOI: 10.1016/j.bmcl.2016.03.060.
- 20. Tverdova N.V., Giricheva N.I., Maizllsh V.E., Galanin, N.E., Girichev G.V. Molecular Structure, Vibrational Spectrum and Conformational Properties of 4-(4-Tritylphenoxy)phthalonitrile-Precursor for Synthesis of Phthalocyanines with Bulky Substituent // International Journal of Molecular Science. 2022. Vol. 23, no. 22. P. 13922. DOI: 10.3390/ijms232213922.
- 21. Botnar A.A., Domareva N.P., Kazaryan K.Y., Tikhomirova T.V., Abramova M.B. Vashurln A.S. Synthesis and spectral properties of tctraphenoxysubstituted erbium phthalocyanines containing peripheral phenyl and cyclohexyl fragments // Russian Chemical Bull. 2022. Vol. 71, no. 5. P. 953–961. DOI: 10.1007/slll72-022-3496-0.
- 22. **Знойко С.А., Елизарова А.П., Кустова Т.В., Наконечная А.Н.** Комплексы эрбия и лютеция «сэндвичевого» типа, содержащие фрагменты тетраантрахинонопорфиразина и замещенных фталоцианинов // Изв. вузов. Химия и хим. технология. 2021. Т. 64, вып. 4. С. 42-51. DOI: https://doi.org/10.6060/ivkkt.20216404.6380
- 23. Orlova A.M., Alentiev A.Yu., Kolesnikov T.I., Tsegelskaya A.Yu., Monakhova K.Z., Chirkov S.V., Nikiforov R. Yu., Abramov I.G., Kuznetsov A.A. Novel organo-soluble poly(etherimide)s based on diethyltoluene-diamine: Synthesis, characterization and gas transport properties // Polymer. 2022. Vol. 256. P. 125258 DOI: 10.1016/J.polymer.2022.125258.
- 24. Soldatova A.E., Tsegelskaya A.Yu., Semenova G.K., Bezsudnov I.V., Polinskaya M.S., Abramov I.G., Kuznetsov A.A. Synthesis of tetraarm stars with polyetherimide-polyether block copolymer arms // Russian Chemical Bull. 2022. Vol. 71, no. 4. P. 777–786. DOI: 10.1007/s11172-022-3478-2
- 25. **Orlova A.M., Tsegelskaya A.Yu., Kolesnikov T.I., Abramov I.G., Kuznetsov A.A.** Novel Polyetherimides Based on 5-Methyl-l,3-phenylene-bis-4-oxyphthalic Acid Dianhydride: Synthesis and Physicochemical Properties // *Polymer Science. Series B.* 2022. Vol. 64, no. 1. P. 17-25. DOI: 10.1134/S1560090422010031.

Поступила в редакцию 24.11.2022 Одобрена после рецензирования 25.11.2022 Принята к опубликованию 09.12.2022