Научная статья УДК 546.74+544.35 DOI: 10.52957/2782-1900-2025-6-1-48-54

ПОЛУЧЕНИЕ ВЫСОКОЧИСТОГО ТЕТРАКИС(ТРИФТОРФОСФИН)НИКЕЛЯ

Д.М. Зимина¹, О.Ю. Трошин^{1,2}, А.Ю. Созин^{1,2}, П.А. Отопкова², А.М. Потапов²

Дарья Михайловна Зимина, аспирант; Олег Юрьевич Трошин, канд. хим. наук, доцент; Андрей Юрьевич Созин, д-р хим. наук; Полина Андреевна Отопкова, канд. хим. наук; Александр Михайлович Потапов, канд. хим. наук

¹Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского, 603022, Россия, г. Нижний Новгород, просп. Гагарина, д. 23; *daria.m.zimina@yandex.ru*

²Институт химии высокочистых веществ им. Г.Г. Девятых Российской академии наук, 603950, Россия, г. Нижний Новгород, ул. Тропинина, 49.

Ключевые слова:	Аннотация.	Представлены	результаты	работ
тетракис(трифторфосфин)	по получению о	бразцов высокочистого	тетракис(трифт	орфосфин)
никеля, примесь, дистилляция,	никеля. Ме	етодами хромато	-масс-спектромет	ірии и
глубокая очистка, коэффициент	масс-спектром	етрии с индукти	ивно связанной	плазмой
разделения.	охарактеризов	ан примесный элемент	пный и молекулярн	ый состав
	исходного и оч	ищенного образцов. П	Іри проведении про	оцесса при
	скорости перегонки 80 мкл/мин и доле отбора 50% содержание			
	лимитируемых	с примесей химически	х элементов желе.	за, меди и
	кобальта нахо	дится ниже 0.01 ррг	п, содержание PF ₃ ,	, CH_2Cl_2 u
	углеводородов н	иа уровне п·10⁻³ ÷ п·10⁻-	⁵ мол.%.	

Для цитирования:

Зимина Д.М., Трошин О.Ю., Созин А.Ю., Отопкова П.А., Потапов А.М. Получение высокочистого тетракис(трифторфосфин)никеля // От химии к технологии шаг за шагом. 2025. Т. 6, вып. 1. С. 48-54. URL: https://chemintech.ru/ru/nauka/issue/5879/view

Введение

Никель состоит из пяти стабильных изотопов ⁵⁸Ni, ⁶⁰Ni, ⁶¹Ni, ⁶²Ni, ⁶⁴Ni, также известны радиоактивные изотопы ⁵⁹Ni ($\tau_{1/2}$ 10⁵ лет), ⁶³Ni (10² лет) и ⁵⁶Ni (6,08 дней) [1, 2]. Изотопы никеля применяются как стартовый материал в синтезе различных нуклидов: ⁶¹Ni и ⁶⁴Ni – для получения ⁶¹Cu и ⁶⁴Cu [2-4], ⁶⁰Ni – для получения ⁵⁷Co [5], ⁶²Ni – при синтезе радиоактивного изотопа ⁶³Ni для компактных источников питания микроваттной мощности с долгим сроком службы [5, 6]. Индивидуальные изотопы никеля также могут представлять фундаментальный интерес для изучения изотопных эффектов в конструкционных материалах [2, 7].

[©] Д.М. Зимина, О.Ю. Трошин, А.Ю. Созин, П.А. Отопкова, А.М. Потапов, 2025

Для получения изотопов никеля методом ультрацентрифугирования в качестве рабочего вещества благодаря высокому давлению пара, относительной химической и термической устойчивости, моноизотопности фтора и фосфора используется тетракис(трифторфосфин) никеля Ni(PF₃)₄ [6, 8-10].

Для указанных областей применения необходим Ni(PF₃)₄ высокой чистоты, однако информация о примесном составе Ni(PF₃)₄, методах его очистки и получении высокочистого вещества в научной литературе отсутствует. Имеется одна публикация о качественном примесном составе паровой фазы образца Ni(PF₃)₄, полученного по реакции никеля с фторидом фосфора (III) [11]. Основными молекулярными примесями в Ni(PF₃)₄ являются углеводороды, галогениды фосфора и смешанные алкил-фторфосфиновые производные никеля, однако в работе [11] не приводится количественное содержание указанных примесей, также не исследован примесный элементный состав вещества. В связи с этим изучение примесного состава, получение и характеризация высокочистых образцов Ni(PF₃)₄ являются актуальной задачей.

Примеси в Ni(PF₃)₄ можно разделить на четыре группы, каждая из которых предполагает индивидуальные подходы для исследования и выделения.

К первой группе относятся примеси химических элементов – схожих по свойствам металлов и неметаллов, обладающих высоким сродством к никелю. В [11] при анализе образца никеля методом масс-спектрометрии с индуктивно связанной плазмой (ИСП–МС) установлено, что наибольший примесный вклад вносят следующие химические элементы (мг/кг): Fe (236 ± 8), P (до 58 ± 6), Cu (16.0 ± 2.0), As (29.0 ± 2.0), Ag (11.1 ± 0.3), Sb (11.0 ± 1.0), Bi (10.9 ± 0.3), Co (7.0 ± 2.0) [12]. Лимитируемыми примесями в изотопах никеля являются медь, железо, кобальт [13], изотопы которых вступают в параллельные радиопревращения и загрязняют получаемые целевые нуклиды.

Реакция получения Ni(PF₃)₄ ведется в избытке трифторида фосфора, он является основным загрязняющим прекурсором и относится ко второй группе примесей. Трифторид фосфора обладает давлением насыщенных паров более $1 \cdot 10^4$ мм рт. ст., что негативно сказывается на процессе ультрацентрифугирования [7], поэтому примесь PF₃ является для Ni(PF₃)₄ лимитируемой. Для очистки Ni(PF₃)₄ от трифторида фосфора используют дистилляционный метод и метод газовой сепарации на каскаде центрифут [7].

К третьей группе примесей относятся предельные и ароматические углеводороды, их производные и галогенуглеводороды, наличие которых обусловлено содержанием данных примесей в исходных веществах. Их содержание варьируется на уровне $n \cdot 10^{-3} - n \cdot 10^{-4}$ масс.%. Данные примеси могут вступать в реакции с никелем, при этом вытесняя PF₃ и образуя комплексы вида Ni(PF₃)₃(PF₂OR) и Ni(PF₃)₃(PF₂R) (R – углеводородный радикал) [11]. Уменьшение количества данных примесей снизит вероятность получения смешанных фторфосфиновых–углеводородных комплексов, наличие которых негативно влияет на процесс ультрацентрифугирования.

Четвертую группу составляют примеси распространенных (постоянных) газов (O₂, N₂, Ar и др.), наличие которых увеличивает общее давление смеси и снижает эффективность изотопного разделения.

Исходя из физико-химических свойств основы и рассмотренных примесей, можно предположить, что дистилляционный метод является перспективным для очистки Ni(PF₃)₄. Целью работы является определение равновесных коэффициентов разделения жидкость – пар для систем Ni(PF₃)₄ – примесь и получение образцов высокочистого Ni(PF₃)₄ дистилляционным методом.

Основная часть

Для проведения опытов по дистилляционной очистке использовали Ni(PF₃)₄, полученный по реакции никеля и трифторида фосфора по методике, предложенной в работе [14]. Для получения высокочистого образца исследуемый Ni(PF₃)₄ загружали в ампулу из молибденового стекла объемом 150 см³ и проводили дистилляцию при температуре 298 К со скоростью испарения 8.0 ± 0.2 мкл/мин с отбором целевой средней фракции. Полученные образцы исследовали методом хромато-масс-спектрометрии с использованием прибора Agilent 6890/MSD 5973N. Ввод пробы проводили с использованием вакуумируемой системы дозирования, дозирование пробы в хроматографическую колонку осуществляли автоматическим двухпозиционным краном-дозатором Valco EH2C6WEZPH-CER5.

Содержание молекулярных примесей в исходном образце и образце, полученном после дистилляционной очистки, определяли методом хромато-масс-спектрометрии. Результаты определения представлены в таблице 1. Из таблицы видно, что концентрация примесей варьировалась в диапазоне n·10⁻³ – n·10⁻¹ мол.%, при этом наблюдалось существенное снижение концентрации примесей.

Примесь	Содержание в исходном образце Ni(PF ₃)4, мол.%	Содержание в полученном образце Ni(PF ₃)4, мол.%	α
PF ₃	0.632	3.2.10-3	26.3
$n - C_5 H_{12}$	0.149	6.5.10-4	3.6
CH_2Cl_2	0.601	1.1.10-4	3.1
$i - C_5 H_{12}$	0.015	1.8.10-4	1.2
3-этилгексан	0.003	3.1.10 ⁻⁵	2.0
3-метилгексан	0.002	5.0.10-5	2.0
$Ni(PF_3)_3(PF_2OC_2H_5)$	0.147	1.1.10-3	3.7
$n - C_7 H_{16}$	0.007	9.7 ·10 ⁻⁵	1.8
2,2-диметилгексан	0.009	7.7.10-4	2.0

Таблица 1. Содержание молекулярных примесей в исходном и очищенном образцах Ni(PF₃)₄ и полученные коэффициенты разделения жидкость – пар для систем Ni(PF₃)₄ – примесь

Общая мольная доля указанных примесей в полученном образце не превышает 5·10⁻³%, массовая доля Ni(PF₃)₄ составляет более 99.998%.

Содержание примесей химических элементов определяли методом массспектрометрии с индуктивно связанной плазмой с помощью одноколлекторного массспектрометра высокого разрешения с индуктивно связанной плазмой ELEMENT 2 [15]. Результаты определения представлены в таблице 2. Концентрация примесей варьировалась в диапазоне n·10⁻⁵ – n·10¹ ppmw.

Π	Исходное	Содержание в	Π	Исходное	Содержание в
примесь	содержание,	полученном	примесь	содержание,	полученном
	ppmw	образце, рртw		ppmw	образце, рртw
Al	0.6	0.1	Мо	0.01	< 0.004
As	0.03	0.001	Na	2	<1
В	0.5	< 0.05	Nb	0.005	< 0.001
Ba	0.03	< 0.02	Pb	0.002	< 0.001
Bi	0.002	< 0.00003	Sb	0.001	< 0.001
Cd	0.004	< 0.001	Si	20	0.3
Cd	0.05	0.002	Sr	0.05	0.003
Со	0.01	0.005	Та	0.006	0.002
Cr	0.005	< 0.001	Те	0.04	0.002
Cu	0.06	< 0.01	Ti	0.1	0.005
Fe	0.1	< 0.01	Tl	0.0005	< 0.0003
Ga	0.05	0.002	U	0.00002	< 0.00003
In	0.003	< 0.001	V	0.1	< 0.005
Lu	0.003	< 0.002	W	0.003	< 0.002
Mg	0.2	< 0.03	Zn	0.05	0.01
Mn	0.002	<0.001	-	_	-

Таблица 2. Содержание примесей химических элементов в исходном и очищенном образцах Ni(PF₃)₄

При сравнении данных из таблицы 2 можно сделать вывод о существенном снижении содержания всех примесей химических элементов, в том числе лимитируемых примесей железа и меди.

Опыты по определению значений эффективного коэффициента разделения жидкость – пар в системе Ni(PF₃)₄ – примеси проводили методом релеевской дистилляции на установке, схема которой приведена в работе [16]. Основными узлами установки являются стеклянная ампула с модельной смесью и магнитной мешалкой, помещенная в термостат, и приемный баллон, охлаждаемый жидким азотом. Скорость испарения модельной смеси регулировали при помощи вентиля тонкой регулировки и контролировали по показаниям образцового вакуумметра ВО 11201. Опыты проводили при температуре 298 К, продолжительность опытов составляла 5-300 мин. Состав смесей определяли методом хромато-масс-спектрометрии.

Значения эффективных коэффициентов разделения жидкость – пар α для систем Ni(PF₃)₄ – примеси рассчитывали по формуле Релея [16, 17]:

$$\frac{x}{x_0} = \left(\frac{V}{V_0}\right)^{\alpha - 1}$$

где V_o, x_o, V, x – объем жидкости и концентрация примеси в перегонной колбе до перегонки и после перегонки соответственно.

Графики зависимости эффективного коэффициента разделения от обратной скорости испарения для ряда примесей в Ni(PF₃)₄ представлены на рис. 1. Значение равновесного а находили путем экстраполяции зависимости эффективного

коэффициента разделения от обратной скорости испарения к нулевой скорости испарения.

Рис. 1. Зависимость эффективного коэффициента разделения пар – жидкость в системе $Ni(PF_3)_4$ – примеси от обратной скорости испарения 1/L

Для получения образцов высокочистого Ni(PF₃)₄ применяли многократную перегонку исходной смеси с отбором порций дистиллята и кубового остатка [16, с. 58]. При перегонке исследовали распределение примесей пентана и Ni(PF₃)₃(PF₃OR) в зависимости от доли отобранного вещества. Исходный Ni(PF₃)₄ объемом 100 мл заливали в стеклянную ампулу и перегоняли при температуре 298 К в охлаждаемую жидким азотом приемную ампулу. После отбора около 10 см³ жидкости приемную ампулу отсоединяли и заменяли на следующую. В результате были получены десять образцов Ni(PF₃)₄ в виде двухфазной системы и твердый нелетучий порошкообразный остаток. Состав жидкой и паровой фаз образцов определяли методом хромато-масс-спектрометрии.

По результатам исследования строили кривые распределения примесей в зависимости от доли отобранного вещества, которые приведены на рис. 2.

Согласно рис. 2 видно, что оптимальной схемой проведения процесса является отбор 20 – 30% фракций, обогащенных более летучими примесями, выделение 30 – 40% целевых средних фракций и дальнейший отброс кубовых фракций.

Твердый остаток растворяли в разбавленной азотной кислоте марки «ХЧ», полученный раствор высушивали на танталовой подложке при температуре 300 °С, после чего определяли элементный состав методом лазерной масс-спектрометрии (ЛМС) на масс-спектрометре ЭМАЛ-2 по методике, приведенной в работе [18]. Элементный состав твердого остатка представлен в таблице 3.

ОТ ХИМИИ К ТЕХНОЛОГИИ ШАГ ЗА ШАГОМ

Рис. 2. Зависимость логарифма концентрации примеси от доли отобранного вещества для системы Ni(PF₃)₄ – примеси

Элемент	С, ат.%	Элемент	С, ат.%		
В	0.05	Cl	0.08		
С	3.6	К	0.1		
0	> 30	Ca	0.007		
Na	0.05	Ti	0.01		
Mg	0.0007	Mn	0.008		
Al	0.02	Cr	0.08		
Si	12	Fe	0.4		
S	0.04	Со	0.0005		
Cu	0.002	-	-		

Таблица 3. Результаты анализа нелетучего остатка

Из таблицы 3 видно, что основными химическими элементами в составе нелетучего остатка являются кислород, кремний и углерод. Наличие этих химических элементов позволяет предположить, что основным составляющим остаток соединением является SiO₂, источником которого служит стеклянная аппаратура.

Выводы и рекомендации

Методом релеевской дистилляции определены коэффициенты разделения жидкость – пар для примесей PF₃, *n*-C₅H₁₂, CH₂Cl₂, *i*-C₅H₁₂, 3-этилгексан, 3-метилгексан, Ni(PF₃)₃(PF₂OC₂H₅), *n*-C₇H₁₆, 2,2-диметилгексан. Дистилляционным методом получен образец высокочистого Ni(PF₃)₄ с содержанием молекулярных примесей фторида фосфора, дихлорметана, алканов, Ni(PF₃)₃(PF₂OC₂H₅) на уровне n·10⁻³ – n·10⁻⁵ мол.% и примесей химических элементов на уровне n·10¹ – n·10⁻⁵ ppmw.

Список источников

- 1. Makhatadze G.V., Schiller M., Bizzarro M. High precision nickel isotope measurements of early Solar System materials and the origin of nucleosynthetic disk variability. *Geochim. Cosmochim. Acta*, 2023, 343, 17-32. DOI: 10.1016/j.gca.2022.12.020.
- 2. Баранов В.Ю. Изотопы: свойства, получение, применение. М.: ФИЗМАТЛИТ. 2005, 600 с.
- 3. Klein C.B., Costa M. Handbook on the Toxicology of Metals (Fifth Edition). *Volume II: Specific Metals*, 2022, 615–637.
- 4. Хорасанов Г.Л., Иванов А.П., Блохин А.И., Демин Н.А. Высоконикелевые стали, обедненные изотопом никель-58, для оболочек твэлов быстрых реакторов. Вопр. атом. науки и техники. Серия: Материаловедение и новые материалы, 2006, 2(67), 229-232.
- 5. Uhm Y.R., Choi B.G., Kim J.B., Jeong D.H., Son K.J. Study of a betavoltaic battery using electroplated nickel-63 on nickel foil as a power source. *Nucl. Eng. Technol.*, 2016, 48(3), 773-777. DOI: 10.1016/j.net.2016.01.010.
- 6. Харитонов И.Д., Мазгунова В.А., Бабаин В.А., Костылев А.И., Меркушкин А.О., Шемухин А.А., Балакшин Ю.В., Кожемяко А.В., Калмыков С.Н., Магомедбеков Э.П. CVD-технология производства атомных источников на основе Ni. *Радиохимия*, 2018, 60(2), 143-147.
- 7. Балдохин Ю.В., Перфильев Ю.Д., Куликов Л.А., Бурназян М.А. Окисление железа с разным содержанием изотопов. Вестник Московского университета. Сер. 2. Химия, 2015, 56(2), 91-97.
- 8. Асадулин Р.С., Галкин Д.Е., Маслов А.Е., Палиенко А.А., Совач В.П., Тухватуллин В.К., Ушаков А.А. Патент РФ № 2748573 С1, 2021.
- 9. **Орлов А.А., Ушаков А.А., Совач В.П.** Разделение изотопов никеля в процессе заполнения каскада газовых центрифуг с различным количеством ступеней. *TOXT*, 2019, 53(2), 146-151. DOI: 10.1134/S0040357119020131.
- 10. Меркулов И.А., Тихомиров Д.В., Обедин А.А., Жабин А.Ю., Парецкова С.А., Томарев А.Н., Кудрина Ю.В., Григорьева В.А. Патент РФ № 2650955 С1, 2018.
- 11. Созин А.Ю., Чернова О.Ю., Сорочкина Т.Г., Трошин О.Ю., Буланов А.Д. Идентификация примесей в тетракис(трифторфосфине) никеля с использованием метода хромато-масс-спектрометрии. *AuK*, 2018, 22(3), 253-258. DOI: 10.15826/analitika.2018.22.3.010.
- 12. Алексеев А.В., Якимович П.В., Кваченок И.К. Определение примесей в никеле методом ИСП-МС. *Труды ВИАМ*, 2020, 2(86), 101-108. DOI: 10.18577/2307-6046-2020-0-2-101-108. URL: https://elibrary.ru/item.asp?id=42392009 (Дата обращения 29.01.2025).
- 13. Топоров Ю.Г., Тарасов В.А., Романов Е.Г., Казаков Л.Л., Андреев О.И., Андрейчук Н.Н., Корнилов А.С., Ротманов К.В. Получение препарата никеля–63 для источников тока. *Сборник трудов АО ГНЦ НИИАР*, 2018, 2, 34-40.
- 14. Прусаков В.Н., Петров Ю.В., Симонов Н.Ф., Хрусталев Б.В. Патент SU 1061391, 1987.
- 15. Отопкова П.А., Потапов А.М., Сучков А.И., Буланов А.Д., Лашков А.Ю. Применение внутреннего стандарта при изотопном анализе высокообогащенного кремния–28 методом масс-спектрометрии высокого разрешения с индуктивно связанной плазмой. *АиК*, 2021, 25(2), 98-109. DOI: 10.15826/analitika.2021.25.2.009.
- 16. **Troshin O.Yu., Bulanov A.D., Chernova O.Yu.** Liquid–Vapor Equilibria in the SiCl₄–A (A = SiCl₄–nFn (n = 1–4) Impurity) Systems. *Inorg. Mater.*, 2018, 54, 840-843. DOI: 10.1134/S0020168518080162.
- 17. **Девятых Г.Г., Еллиев Ю.Е.** Глубокая очистка веществ. Учеб. пособие для вузов. М.: «Высшая школа». 1974, 160 с.
- 18. **Ковалев И.Д., Потапов А.М., Буланов А.Д.** Измерение изотопного состава изотопно-обогащенного кремния и его летучих соединений методом лазерной масс-спектрометрии. *Масс-спектрометрия*, 2004, 1(1), 37-44.

Поступила в редакцию 19.12.2024 Одобрена после рецензирования 27.01.2025 Принята к опубликованию 05.02.2025